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SU„3… baryon chiral perturbation theory and long distance regularization
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The use of SU~3! chiral perturbation theory in the analysis of low energy meson-baryon interactions is
discussed. It is emphasized that short distance effects, arising from the propagation of Goldstone bosons over
distances smaller than a typical hadronic size, are model-dependent and can lead to a lack of convergence in
the SU~3! chiral expansion if they are included in loop diagrams. In this paper we demonstrate how to remove
such effects in a chirally consistent fashion by use of a cutoff and demonstrate that such a removal ameliorates
problems which have arisen in previous calculations due to large loop effects.@S0556-2821~99!00603-7#

PACS number~s!: 11.30.Rd, 12.39.Fe, 13.30.Ce, 13.30.Eg
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I. PROBLEM

The low energy phenomenology of baryons is relativ
simple. In the 1960s, this simplicity was evidenced by
successes of SU~3! symmetry. Indeed, masses and couplin
can be well described by SU~3! invariant interactions with
SU~3! breaking at the 5–25% level. In the present era
have come to understand this invariance in terms of Q
and the underlying quark substructure of baryons—SU~3!
relations work because the effects of thes-u-d mass split-
tings are relatively small. Moreover, the quark model ev
allows us to understand many details of the pattern of SU~3!
symmetry breaking. Overall, most features of the static pr
erties of baryons are reasonably well understood.

It has also been realized that the old SU~3! results repre-
sent merely the lowest order terms of an expansion in ene
and quark masses in a rigorous effective field theory fram
work which exploits the~broken! SU(3)L3SU(3)R chiral
symmetry of the QCD Lagrangian. The higher order terms
this expansion can be calculated via the technique ca
‘‘chiral perturbation theory,’’ which has already been high
developed and successfully applied within the sector
Goldstone boson interactions@1#. In the related case o
baryon–Goldstone-boson interactions, there has also be
great deal of activity using methods generalized from
purely mesonic situation@2#.

However, the problem is that traditional SU~3! baryon
chiral perturbation theory does not appear to work well.
generally applied, it does not manifest the approxim
SU~3! symmetry that one sees in the real world, in th
SU~3! breaking corrections in loop diagrams often appea
the 100% level. It is particularly distressing that these effe
come from the most apparently model-independent part
the theory—the nonanalytic chiral loops. With some para
eter fitting, it appears in practice that such effects can
compensated for by positing equally large effects from
effective Lagrangian at higher order in the chiral expansi
0556-2821/99/59~3!/036002~14!/$15.00 59 0360
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However, this leads to worries about convergence. In
event, the simplicity evident in baryon physics has beco
lost. In its conventional manifestation, then, SU~3! baryon
chiral perturbation theory does not represent a good first
proximation to baryon physics.

In this paper we will suggest a resolution to this proble
in terms of a reformulation of baryon chiral perturbatio
theory within a framework which is better suited to pheno
enological applications. Before we turn to a diagnosis, let
however, demonstrate the nature of the problem by obs
ing several pertinent results. In each case we defer the
cifics of the chiral analysis until later in the paper and simp
quote results in order to convince the reader that a prob
exists.

~i! Baryon masses can be understood by noting that
quark mass nondegeneracy arises from a component ofLQCD
which can be represented in terms of a Lorentz scalar SU~3!
octetq̄l8q operator. To first order in symmetry breaking on
can then write the baryon octet masses in terms of an SU~3!

invariant termM̂0 plus octetf m ,dm couplings:

MN5M̂024mK
2 dm14~mK

2 2mp
2 ! f m

ML5M̂02
4

3
~4mK

2 2mp
2 !dm

MS5M̂024mp
2 dm

MJ5M̂024mK
2 dm24~mK

2 2mp
2 ! f m . ~1!

Since the four octet baryon masses are represented in t
of effectively three parameters, there is a corresponding s
rule—that of Gell-Mann and Okubo@3#:

MS2MN5
1

2
~MJ2MN!1

3

4
~MS2ML!
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Expt.: 254 MeV5248 MeV ~2!

which is satisfied experimentally at the 3% level.
When analyzed in the usual fashion in chiral perturbat

theory, however, this simplicity is lost. At one loopO(q3)
order the chiral loop corrections are found to be extrem
large @4#:

dMN520.31 GeV, dMS520.67 GeV,

dML520.66 GeV, dMJ521.02 GeV,
~3!

such that, e.g., theJ mass receives a 100% correction. Th
calculation has also been carried out toO(q4) by Borasoy
and Meissner@5#, who quote their results as

MN5M̄ ~110.3420.3510.24!

MS5M̄ ~110.8120.7010.44!

ML5M̄ ~110.6920.7710.54!

MJ5M̄ ~111.1021.1610.78! ~4!

where the non-leading terms above refer to the contribu
from O(q2) counterterms, nonanalytic pieces ofO(q3), and
O(q4) counterterms respectively. Obviously, the contrib
tion from higher order terms is far larger than one expe
and the series does not display obvious convergence. A
the Gell-Mann–Okubo deviation is found to be 5 tim
larger than experiment.

~ii ! Baryon axial vector couplings can be related by not
that the weak axial current arises from an SU~3! octet
q̄8gmg5q structure. Thus to leading order in SU~3! the vari-
ous weak matrix elements can be represented in term
simple f A ,dA couplings. A fit to the ten experimentally mea
sured semileptonic hyperon decay rates is found to yield
sonable results, withx2/NDF;1. SU~3! breaking in the de-
cay rates is noticeable, but the amount of SU~3! breaking is
never above 5%@6#. One can explore quark models and fin
that they generate breaking that is of about this magnitu
and the challenge then is to fit the pattern of breaking.

When chiral loops are calculated@7#, one finds a logarith-
mic dependence on the meson masses that leads to si
cant SU~3! breaking. Typically these effects are too larg
Numerically, choosing a renormalization scalem;1 GeV,
typical leading logarithmic corrections are found to be at
30–50% level and a fit to the experimental hyperon de
rates finds a much increased chi-squared—the chiral cor
tions go in the wrong direction.

~iii ! S-wave nonleptonic hyperon decay amplitudes can
related by using the feature that the octet component of
weak Hamiltonian is dominant over its 27-dimensional cou
terpart by a factor of 20 or so, plus using chiral symmetry
relate the experimental pion decay amplitudes to simp
baryon to baryon matrix elements. This allows a fit in ter
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of octet f w ,dw parameters: Such a representation yield
very good fit to the experimental amplitudes in that the t
independent predictions1

A~S1
1!50 vs 0.1331027 ~expt!

)A~S0
1!22A~J2

2!2A~L2
0 !50 vs 0.1131027 ~expt!

~5!

are, since the typical size of ans-wave amplitude is;4
31027, both reasonably well satisfied by the data.2

In baryon chiral perturbation theory, the chiral loop co
rections to individual terms are found to be at the 30–5
level @7#, and a large correction to the Lee-Sugawara relat
is found:

)A~S0
1!22A~J2

2!2A~L2
0 !'26.431027 ~6!

which is in considerable disagreement with the experime
number. The other lowest order prediction,A(S1

1)50, is not
affected by chiral logarithms.

One can also see the problem with the chiral converge
of individual terms. Indeed, a comprehensive analysis of
problem up to second order counterterms has been given@9#:

A~L0
0!52.35~110.6220.65!31027

A~S0
1!53.09~110.3020.32!31027

A~S1
1!5031027

A~J0
0!53.06~110.4020.36!31027 ~7!

where the various contributions are from lowest ord
nonanalytic components, and next order counterterms
spectively.

~iv! Hyperon magnetic moments can be related to o
another since they arise from an SU~3! octet q̄8gmq struc-
ture. Then to leading order the moments can be written
terms of simplef m ,dm couplings:

mp5mS15
1

3
dm1 f m

mn52mL5mJ052
2

3
dm

1Note that the second of these results is the Lee-Sugawara
rule @8#.

2It is, of course, possible to apply a similar analysis to the cor
spondingP-wave amplitudes. However, in this case the lead
piece of each amplitude involves a significant cancellation fr
from pairs of baryon pole diagrams, so that there is large and v
model dependent sensitivity to higher order chiral contributio
Thus we do not analyze this case.
2-2
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SU~3! BARYON CHIRAL PERTURBATION THEORY AND . . . PHYSICAL REVIEW D 59 036002
mS25mJ25
1

3
dm2 f m

mLS5)mS05
1

)
dm . ~8!

The experimental moments are in approximate~but not out-
standing! agreement with these predictions.@Although it is
not relevant for our considerations here, we note that
heavier mass, and hence the smaller magnetic momen
the strange quark explains most of the observed SU~3! break-
ing.#

Again the chiral corrections are large and harmful. N
merically, picking a renormalization scalem51 GeV, the
nonanalytic corrections are at the 50–90% level, and m
enormous modifications of the lowest order results.
shown by Caldi and Pagels, there remain three relatio
which are independent of these corrections and are in
reasonably well satisfied by the experimental numbers@10#:

mS1522mL2mS2,

mJ01mJ21mn52mL2mp ,

mL2)mLS5mJ01mn . ~9!

However, other relations pose significant problems for
perimental agreement. Meissner and Steininger have
formed anO(q4) analysis of the problem and have show
that it is possible to get good agreement via a careful cho
of counterterms@11#. The convergence of the chiral expa
sion is again a possible problem, as the contributions
terms of successive orders is found to be

mp54.69~120.5710.16!52.79

mn522.85~120.3610.03!521.91

mS154.69~120.7210.24!52.46

mS051.43~120.9310.38!50.65

mS2521.83~120.4110.04!521.16

mLS52.47~120.5710.18!51.51

mJ0522.85~120.9510.39!521.25

mJ2521.83~120.5710.18!520.65.
~10!

We see in each case then that the chiral corrections
large and in each situation the leading nonanalytic com
nents destroy the good experimental agreement which e
at lowest order. There is something clearly ineffective ab
this procedure. For a technique that has aspirations of ri
this is a dismaying situation. We will show below that th
problem resides in a spurious short-distance contribution
appears in loop diagrams when they are regularized dim
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sionally. We propose that we should keep only the long d
tance parts of the loops, and propose a cutoff regulariza
that accomplishes this.

II. EFFECTIVE FIELD THEORY: SEPARATING LONG
AND SHORT DISTANCES

Effective field theory is a technique for describing the lo
energy limit of a theory. It is an ‘‘effective’’ description
because it uses the degrees of freedom and the interac
which are correct at low energy. All the features of the hi
energy portion of the theory are captured in the parameter
a general local effective Lagrangian which describes the
energy vertices. Using these interactions one treats the
energy dynamics in a complete field theoretic description

Within such a treatment, one encounters loop diagrams
which the integration over the momenta includes both l
energy and high energy components. While the low ene
portion is fully correct within the effective theory, the hig
energy portion is not. One might worry then about the inc
sion of such incorrect high-energy or short-distance phys
present in loops. However, this is not a problem in gene
since this high energy effect has the same structure as
terms in the general local Lagrangian, meaning that any
correct loop contribution can be compensated for by a s
of the parameters of the Lagrangian. As an example,
ultraviolet divergences in the effective theory are all a
sorbed by defining renormalized parameters.

In practice, there is a situation where such loop effe
cancause problems. This occurs if the residual short dista
contributions are large evenafter renormalization. A large
and incorrect short distance effect can still be removed by
adjustment of parameters, but those parameters must co
quently also be large. We then obtain an expansion whic
of the form

M;M0~12111211¯ ! ~11!

where each term in the expansion is sizable and there is
clear convergence. If one were able to carry out the proc
to all orders, one would, of course, still get the right answ
However, at any finite order, the incorrect short-distan
physics in loops has obscured the answer and the expan
is useless. While not formally ‘‘wrong,’’ this procedure
ineffective, which is certainly a poor trait for an effectiv
field theory.

In SU~3! baryon chiral perturbation theory, exactly th
situation occurs when the theory is regularized dimensi
ally. We will show that the poor convergence described
the Introduction follows largely from the short-distance co
ponent of loop diagrams. In order to provide a more effect
description, we will then reformulate the theory using a c
off which retains only the reliable—long-distance—portio
of loop diagrams. This will result in improved phenomeno
ogy. Baryon effective field theory becomes even more eff
tive with a long-distance regularization scheme.

In baryon chiral perturbation theory, the transition b
tween short and long distance occurs around a distance s
of ;1 F, or a momentum scale of;200 MeV. This corre-
sponds to the measured size of a baryon and we will refe
2-3
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DONOGHUE, HOLSTEIN, AND BORASOY PHYSICAL REVIEW D59 036002
it as the separation scale. The effective field theory treats
baryons and pions as point particles. This is appropriate
the very long distance physics—the ‘‘pion tail’’ is indepe
dent of whether the baryon is treated as a point particle o
extended object. However, for propagation at distances
than the separation scale, the point particle theory does
provide an accurate representation of the physics—the c
posite substructure becomes manifest below this point.

In the next section we focus on the specific Feynm
integrals that arise in baryonic calculations. Our goal is
understand the structure of loops in this effective field the
by separating the short-distance and long-distance phy
within the loop integral. The use of a cutoff representing
separation scale will allow us to show that the long dista
physics is well behaved, and that dimensional regulariza
in practice contains large short distance contributions
these particular integrals.

III. ANATOMY OF FEYNMAN INTEGRALS

We begin by performing an autopsy on a particular Fe
man integral that appears in the baryon mass analysis. C
sider the integral

E d4k

~2p!4

kikj

~k02 i e!~k22m21 i e!
52 id i j

I ~m!

24p
~12!

where the right hand side simply defines the functionI (m).
When regularized dimensionally this has the value

I dim-reg~m!5m3. ~13!

This integral is uniquely the source of nonanalytic corre
tions to baryon masses.

Some comments about the dimensionally regulari
form are instructive.

~i! The Feynman integral is cubicly divergent at high e
ergy. However, a peculiarity of the dimensionally regula
ized form is that the result is finite. This is not a problem a
occurs at other times in dimensional regularization. Ho
ever, it is one indication that this regularization scheme
plies a particular short distance subtraction, which will
general leave behind finite effects from short distance ph
ics.

~ii ! The only scale in the integral is the meson massm.
Therefore the relevant momenta in the integral all scale w
m also. In the limit thatm is very large, all of the relevan
momenta correspond to high-energy and short-distance.
is an indication that asm grows the dimensionally regular
ized integral becomes totally dominated by short dista
physics—below the separation scale.

~iii ! If we are interested inonly the long distance compo
nent of the integral, this portion would fall off with increas
ing mass. At largem the meson progagator could be appro
mated by a constant~e.g., as we do for theW-boson mass in
low energy weak interactions! and the low energy portion o
the integral would fall as 1/m2.

~iv! We would expect that the long distance portion of t
integral would be largest for the smallest meson masses,
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greatest for masssless Goldstone bosons. However, the f
Eq. ~12!, vanishes for massless particles and is very small
small meson masses.

These are all indications that an overall subtraction
taken place which confuses short and long distance phys
We cannot count on the dimensionally regularized form
yield only long distance physics—an implicit short-distan
contribution is carried along also.

Now let us isolate the long distance component of
integral. Indeed it is possible to remove the short dista
portion by use of a cutoff regularization, as we demonstra
in Ref. @12#. Although an exponential cutoff in three
momentum was employed therein, for our purposes it is m
convenient to employ a simple dipole regulator

S L2

L22k2D 2

~14!

since it enables loop integration to be carried out in terms
simply analytic forms. However, the specific shape of t
cutoff is irrelevant—a consistent chiral expansion can alw
be carried out to the order we are working in.

The introduction of the dipole cutoff, Eq.~14!, yields

E d4k

~2p!4

kikj

~k02 i e!~k22m21 i e! S L2

L22k2D 2

52 id i j

I L~m!

24p
~15!

where

I L~m!5
1

2
L4

2m1L

~m1L!2 . ~16!

Various comments on this form are appropriate:

FIG. 1. The integralI (m) for the case of dimensional regula
ization (I 5m3) and in the cutoff scheme withL5400 MeV.
2-4
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SU~3! BARYON CHIRAL PERTURBATION THEORY AND . . . PHYSICAL REVIEW D 59 036002
~i! This integral is plotted in Fig. 1 forL5400 MeV,
along with its dimensionally regularized analogue. We s
that the cutoff result is much smaller than that of dime
sional regularization for kaon and eta masses. Moreo
what matters for SU~3! breaking aredifferencesin the inte-
gral between pions kaons and etas, since a constant e
can be absorbed into chiral parameters. This differenc
quite small for the cutoff version. We conclude that most
the dimensionally regularized Feynman integral for kao
and etas corresponds to short distance physics.

~ii ! The greatest contribution at long distance is seen
the cutoff scheme to come from massless mesons, as
pected. As the meson mass increases, there is a decre
effect from the long distance portion of the integral.

~iii ! We observe then that in the small mass limit

I ~m! ——→
m!L 1

2
L32

1

2
Lm21m31¯ ; ~17!

i.e., I (m) reduces to the dimensional regularization res
m3, plus polynomial terms inL which are absent in the
dimensional approach. In the next section, we will see
plicitly how these polynomial terms can be absorbed in
renormalization of chiral parameters.

~iv! In the opposite limit of a large mass compared to
cutoff

I ~m! ——→
L!m L4

m
2

3

2

L5

m2 1¯ ~18!

the functionI (m) is found to depend upon the pseudosca
mass to inverse powers, meaning that the pion will cont
ute much more than its heavier eta or kaon counterparts
we expect intuitively.

Our conclusion from studying the integral, Eq.~12!, is
that the cutoff scheme picks out the long distance part of
integral, which behaves as expected on physical ground
contrast, the dimensional form carries with it implicit an
large contributions from short distance physics. It is not s
prising then that the large short distance effects dominate
analysis when dimensional regularization is employed
we will demonstrate this explicitly in the next sections.

Before returning to the physics, we analyze the ot
Feynman integrals which arise in the analysis of bary
physics. In the case of baryon axial couplings ands-wave
hyperon decay the relevant heavy baryon integral which g
erates the nonanalytic terms inm2 ln m2 is

E d4k

~2p!4

kikj

~k02 i e!2~k22m21 i e!
52 id i j

J~m2!

16p2 .

~19!

In dimensional regularization the integral has the value

Jdim reg~m2!5m2 ln
m2

m2 ~20!

while the cutoff version is given by
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E d4k

~2p!4

kikj

~k02 i e!2~k22m21 i e! S L2

L22k2D 2

52 id i j

JL~m2!

16p2 ~21!

with

JL~m2!5
L4m2

~L22m2!2 ln
m2

L2 1
L4

L22m2 . ~22!

We plot these forms in Fig. 2. The behavior is qualitative
similar to that which occurred with the previous integral
the dimensional form overstates the amount of SU~3! break-
ing. In addition the growth in the magnitude of the integral
large masses indicates that short distance physics domin
the dimensionally regulated form.

The small and large mass limits of the cutoff form a
given by

J~m2! ——→
m2!L2

L21m2 ln
m2

L2 1¯ ~23!

and

J~m2! ——→
m2@L2

L4

m2 ln
m2

L2 1¯ ~24!

so that again our intuitive expectations are met.
Finally, we consider the integral which is relevant in th

analysis of the magnetic moments:

E d4k

~2p!4

kikj

~k02 i e!~k22m21 i e!2 52 id i j

K~m!

16p
.

~25!

The dimensionally regularized form is given by

FIG. 2. The integralJ(m2). The lower curve is the result in
dimensional regularization, whereas the upper curve shows the
of the cutoff scheme withL5400 MeV.
2-5
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DONOGHUE, HOLSTEIN, AND BORASOY PHYSICAL REVIEW D59 036002
Kdim reg~m!5m. ~26!

Once again, the integral shows no sign of its true linear
vergence, and grows at large values ofm, indicating short
distance dominance at largem. The use of the dipole cutof
yields

K~m!52
1

3
L4

1

~L1m!3 , ~27!

which is plotted in Fig. 3 and is there compared to the
mensionally regularized form. Again we see that the lo
distance portion of the integral is well behaved and that
mensional regularization overstates the SU~3! breaking in the
integral. The functionK(m) has the small and large mas
limits

K~m! ——→
m!L

2
1

3
L1m1¯ ~28!

and

K~m! ——→
m@L

2
L4

3m3 1¯ ~29!

which have the expected qualitative forms.

IV. THEORY AND PHENOMENOLOGY WITH A CUTOFF

In the previous section, we used a cutoff as a tool
explore the long-distance portion of loop integrals. Since
find the long-distance portion to be well behaved, we susp
that the problems described in the Introduction are in f
caused by the spurious inclusion of short-distance effe
We then turn to a different use for the cutoff—as a regul
ization technique for handling loop integrals.

FIG. 3. The integralK(m). The upper curve is the result i
dimensional regularization, whereas the lower one shows the
of the cutoff scheme withL5400 MeV.
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Field theories can be applied with a variety of regulariz
tion methods. In the end, the resulting physics should
independent of the choice of regularization scheme. At fi
sight this suggests that it is unlikely that simply employing
change in regularization can have any impact on the pr
lems mentioned in the Introduction. However, we will s
that the choice of a cutoff with a value around the separa
scale will amount to a partial resummation of the chiral e
pansion and that this can be done without losing the ge
ality of the effective field theory treatment. If we are right
our assessment that the problem is caused by spurious
effects below the separation scale, this resummation can
lead to an improved procedure for phenomological appli
tions.

We will first show explicitly how the standard chiral ex
pansion is exactly reproduced for small values of the me
masses. A key ingredient of this demonstration is the ren
malization of the chiral parameters. The loop integrals w
often depend strongly on the value of the cutoff, and we w
encounter integrals withL3, L2, L and lnL dependences
whereL represents the momentum space cutoff. Howev
this does not mean that the resulting physics will depend
the cutoff this strongly. Indeed, the final physics is indepe
dent ofL. This occurs because the terms inL have a chiral
SU~3! dependence which is the same as the various term
the effective Lagrangian. Therefore, in physical proces
one can absorb thisL dependence into a renormalized val
of these parameters, e.g.

ci
ren5ci1

g iL
2

16p2 , ~30!

for some specific coefficientci . ~Hereg i is a number to be
calculated in the renormalization process.! All phenomenol-
ogy can be expressed in terms of the renormalized par
eters and the strongL2 dependence of this example wou
have vanished. When the meson masses are small, we
Taylor expand the loop integrals, renormalize the chiral
rameters and recover exactly the usual results.

For realistic phenomenology, however, we need to use
physical values of the meson masses. The kaon and
masses are in reality not small compared to the separa
scale. They are also not so large that all of their effects
reliably treated as short-distance and hence be built into
parameters of the effective Lagrangian. We do need to t
them as dynamical degrees of freedom and include at l
their long distance effects. When we use a cutoff regulari
tion, with a cutoff close to the separation scale, the lo
integrals will be the nonlinear functions of the mass, as
scribed in the previous section. When these are evaluate
the physical meson masses, this will generate effects tha
equivalent to higher orders in the chiral expansion. Thus
form of regularization can be viewed as a partial resumm
tion of the chiral series. If we continue to treat the problem
full generality, we will still need to include chiral paramete
in the effective Lagrangian which will allow us to continu
to be fully model-independent. In each of the sections t
follow, we will explore the phenomenology at physical va
ues of the meson masses.

se
2-6
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The cutoffL should not be taken so low in energy that
removes any truly long distance physics. Also, while it c
in principle be taken much larger than the separation sc
this will lead to the inclusion of spurious short distance ph
ics which can upset the convergence of the expansion.
ideal to take the cutoff slightly above the separation scale
that all of the long distance physics, but little of the sh
distance physics, is included.

This procedure is not a model. Indeed its purpose is
remove the model-dependent short distance portions
loops. However, it appears to do so at the cost of introduc
a new parameter, the cutoffL, plus the dependence of th
choice of cutoff function. If the form of this function or th
value of L played a major role in the phenomenology, th
would be a serious drawback for this approach. Howev
renormalization theory leads us to expect that the dep
dence on the cutoff should be quite mild in phenomenolo
cal applications. This is because the cutoff~and the func-
tional dependence! can be absorbed in the renormalization
the chiral parameters. If one worked to all orders, all dep
dence would disappear. If one is working to a given fin
order, the residual dependence is expected to occur on
the next order beyond that at which one is working at. Sin
it appears from the above analysis that the cutoff integ
are rather slowly varying functions of the mass, we exp
that working to an order where one includes the first SU~3!
breaking parameters should be sufficient to minimize the
off dependence to an acceptable value.

Another issue that we should address here is the natu
the energy expansion in such a procedure. When usin
regularization scheme which does not contain any dim
sionful parameters, there is a particularly simple pow
counting procedure which determines the order of contri
tions of loop diagrams. If the regularization scheme do
involve a mass parameter, this counting will not directly a
ply. We will see this explicitly below as the loop process w
renormalize chiral parameters at different orders in the
ergy expansion. As one goes to the next order in loops,
will have to perform this renormalization again order by o
der. This, however, is not a fundamental problem. As
show, for small values of the meson masses we obtain
actly the same results as in other regularization schem
Therefore, we can use the small mass limit to set up
chiral expansion and determine the order of the loops
one should include. Subsequently taking the masses to
physical values will accomplish the partial resummation
effects described above. However, the procedure in term
which loops to include need not be changed.

There is one special feature involved in doing chiral p
turbation theory with a cutoff instead of dimensional reg
larization. This involves an occasional change in the Fe
man rules due to the presence of derivative couplings.
analysis of this aspect goes back to a classic paper on
subject@15#. Recall that in the canonical construction of
field theory, one forms the canonical momenta conjugate
the field variables via

p~x!5
d L

d ]0f~x!
. ~31!
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When the interaction piece of the Lagrangian involves ti
derivatives, the canonical momenta will also carry portio
of the interaction so that in forming the Hamiltonian, th
interaction Hamiltonian will no longer be simply the neg
tive of the interaction Lagrangian. Since perturbation the
and the Feynman rules are formulated from the interac
Hamiltonian, the canonical formalism will involve som
modified~and non-covariant! vertices. At the same time, th
presence of time derivatives in interactions will act on t
time ordering in propagators to produce further no
covariant contributions to loop processes@15#. These modi-
fications do not always cancel but can leave a residual in
action. While one can simply calculate this using t
straightforward but clumsy canonical formalism, the auth
of Ref. @15# show that one can use the naive rules if one a
a specific contact interaction proportional tod4(0) to the
Feynman rules of the mesonic part of the theory. When us
dimensional regularization, one of the peculiarities is that
regularized value ofd4(0) is equal to zero. Therefore th
contact interaction vanishes and we may proceed using
naive Feynman rules when calculating dimensionally. Ho
ever, with a momentum-space cutoff, one hasd4(0);L4

and one gets a nontrivial modification quartic in the cuto
This influences the purely mesonic sector of the theory.
have verified, however, that the baryonic processes that
consider are not modified by this feature at the order that
are working.

We now explore several specific cases of the physics
loop processes in baryon chiral perturbation theory. Our p
cedure in each case is the same. We take the known re
of a standard analysis of the one-loop amplitudes and
express it in terms of the Feynman integrals that we h
analyzed. We then show how the renormalization proced
is accomplished with a cutoff, absorbing the leading cut
dependence into renormalized parameters. In each case
reproduces the standard analysis for small values of the
sonic masses. Then we turn to a realistic case of the phys
meson masses and a finite cutoff. In this situation, the p
ence of the cutoff only permits the long distance loop effec
and this leads to the much more moderate effect of lo
compared to the results quoted in the Introduction.

V. BARYON MASSES

In this section we return to the physics of chiral loops,
illustrated in the analysis of baryon masses, and deal w
specific numerical results. This has already been discusse
Ref. @12#, but it is pedagogically useful to revisit the analys
in the present context. This will clearly illustrate the reno
malization program and the isolation of long-distance lo
effects.

To lowest and next leading order in the derivative expa
sion the effective Lagrangian which describes the inter
tions of baryons can be written, in the heavy baryon form
ism, as

LMB5Tr B̄iv•DB1dA Tr B̄Sm$um ,B%

1 f A Tr B̄Sm@um ,B#1dm Tr B̄$x1 ,B%

1 f m Tr B̄@x1 ,B#1b0 Tr B̄B Tr x1¯ ~32!
2-7
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wherex1 is given in terms of the quark mass matrixm via
x152B0m,

Dm5]m1
1

2
@u†,]mu# ~33!

is the covariant derivative, and

Sm5
i

2
g5smnvn ~34!

is the Pauli-Lubanski spin vector. The nonlinear meso
chiral constructsu,um are given by

U5u25expS i

Fp
(

j
l jf j D , um5 iu†]mUu†. ~35!

Here M0 , f m ,dm ,b0 are free parameters in terms of whic
the tree level contribution to the baryon masses can be w
ten as given above in Eq.~1! with

M̂05M022~2mK
2 1mp

2 !b0 . ~36!

If we continue the analysis to higher order, we include
effects of quark loops and of the higher order terms in
general Lagrangian. In an expansion in quark mass we h
the schematic form

MB5M01(
q

aqmq1(
q

bqmq
3/21(

q
cqmq

21¯ .

~37!

Here, the terms linear in the quark mass are those par
etrized in Eq.~1!, where we recall thatmP

2;mq . The next
term in the expansion is nonanalytic in the quark mass
comes uniquely from loop diagrams. Finally the terms
ordermq

2 come from yet higher order effects which we w
not explicitly consider here.

The one loop chiral corrections are well known and
volve the integral given in Eq.~12! of the previous section
In dimensional regularization this yields terms inmP

3 and can
be represented as

dMi52
1

24pFp
2 (

j
k i

jmj
3 ~38!

with

kN
p5

9

4
~dA1 f A!2, kN

K5
1

2
~5dA

226 f AdA19 f A
2 !,

kN
h5

1

4
~dA23 f A!2

kS
p5~dA

216 f A
2 !, kS

K53~dA
21 f A

2 !, kS
h5dA

2

kL
p53dA

2 , kL
K5dA

219 f A
2 , kL

h 5dA
2

03600
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kJ
p 5

9

4
~dA2 f A!2, kJ

K 5
1

2
~5dA

216dAf A19 f A
2 !,

kJ
h 5

1

4
~dA13 f A!2. ~39!

This produces the large mass shifts quoted in Eq.~3!. The
violation of the Gell-Mann–Okubo relation is given then b

1

4
@3ML1MS22MN22MJ#

5
dA

223 f A
2

96pFp
2 @4mK

3 23mh
32mp

3 #. ~40!

The deviation from the Gell-Mann–Okubo relation due
loops is found to be quite small, primarily due to the~acci-
dental! feature thatdA

223 f A
2'0.02!1.

We now turn to an exploration of the analysis using
cutoff regularization. The first task is to see how the ren
malization program works, in order that we obtain exac
the same result in the limit of small masses. The diagra
involved are the same as in the previous analysis, but
utilize the cutoff form for the Feynman integral. This is sim
ply done by replacingmP

3 in Eq. ~38! by the function
I L(mP

2 ), expanded as in Eq.~17!. The one loop contribution
to the mass then has the schematic form

dMi52
1

24pFp
2 (

j
k i

j S 1

2
L32

1

2
Lmj

21mj
31¯ D .

~41!

Obviously the term inmj
3 is identical to that arising in con

ventional dimensional regularization, but more interest
are the contributions proportional toL3 and toLmP

2 . The
piece cubic inL has the form

dMi
L3

52
L3

48pFp
2 (

j
k i

j ~42!

and is independent of baryon type—it may be absorbed
a renormalization ofM0 :

M0
r 5M02~5dA

219 f A
2 !

L3

48pFp
2 . ~43!

On the other hand the terms linear inL,

dMi
L5

L

48pFp
2 (

j
k i

jmj
2, ~44!

must be able to be absorbed into renormalizations of
coefficients involvingmq , and indeed this is found to be th
case—one verifies that

dm
r 55dm2

3 f A
22dA

2

128pFp
2 L
2-8
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f m
r 5 f m2

5dAf A

192pFp
2 L

b0
r 5b02

13dA
219 f A

2

576pFp
2 L. ~45!

That such renormalization can occur involves a highly c
strained set of conditions and the fact that they are satisfie
a significant verification of the chiral invariance of the cuto
procedure. Of course, once one has defined renormalized
efficients, since they are merely phenomenological par
eters which must be determined empirically, the procedur
identical to the results of the usual dimensionally regulariz
technique when the masses are smaller than the cutoff.

Having convinced ourselves of the chiral invariance of
cutoff procedure to the order we are working, we can n
apply it to the case where masses are their physical va
and the cutoff is taken to be phenomenologically relevan
i.e., L>1/̂ r B&;300– 600 MeV. However, we first remov
the asymptotic mass-independent component of the func
I (m) by defining

Ĩ ~m!5I ~m!2
1

2
L3 ~46!

since these effects can be absorbed intoM0 and give mis-
leading indications about the size of the nonanalytic effe
in the large cutoff limit. The size of the long distanc
nonanalytic contributions to the baryon masses is then g
by

dMi52
1

24pFp
2 (

j
k i

j Ĩ ~mj ! ~47!

and the corresponding numerical results are given in Tab
A careful look at these findings reveals that the quantita
results are in agreement with our qualitative expectation
for a reasonable value of the cutoff parameterL, the overall
size of the nonanalytic corrections is much smaller that t
found in the dimensionally regularized case since the s
distance contribution from kaon and eta loops is much
duced. There is no longer any in principle problem with t
convergence of the chiral expansion and the ‘‘mystery’’
why the lowest order fit linear inmq works so well is re-
solved. Of course, one still must include the mod
dependent contribution from short distance effects, but th

TABLE I. Nonanalytic contributions~in GeV! to baryon masses
in dimensional regularization and for various values of the cu
parameterL in MeV.

Dim. L5300 L5400 L5500 L5600

N 20.31 0.02 0.03 0.05 0.07
S 20.62 0.03 0.05 0.08 0.12
L 20.68 0.03 0.06 0.09 0.13
J 21.03 0.04 0.08 0.12 0.17
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no longer exists a problem from the calculable and mod
independent long distance component.

A good fit to the baryon masses can be accomplished
any value of the cutoff in the range that we consider. F
example, withL5400 MeV, we have the masses describ
by

MN51.14320.23710.03450.940

MS51.14320.00510.05351.191

ML51.14320.08610.05751.114

MJ51.14310.10610.07751.326 ~48!

where all numbers are given in GeV. In Eq.~48!, M̂0 is the
first term, the second term comes from the leading tree le
SU~3! breaking due to quark masses parametrized as in
~1! and the last term from the residual loop effects. The t
level terms contribute 343 MeV to theJ-N mass splitting,
while the loop effects contribute only 43 MeV. The chir
expansion is well-behaved—loops do not upset the basic
tern at lowest order and the approximate SU~3! invariance is
manifest. In order to disentangleM0 andb0 , one has also to
take, e.g., thepNs-term into account@13#.

If we had used a different value of the cutoff in the reg
larization, the specific contributions would have been diff
ent, yet the final answers change by less that 1 MeV foL
from 300 MeV to 600 MeV. This is a demonstration of th
cutoff independence of this procedure.~Our previous discus-
sion suggested that we should have found a cutoff dep
dence equivalent to neglected higher order terms, which
this case would have been of order 5 MeV. In practice
found less dependence than that.! We have also verified tha
we obtain identical results for another form of the cuto
function @12#.

Having seen how the cutoff procedure can be successf
applied in the case of the baryon masses, we can now m
on the the remaining applications—axial coupling, nonle
tonic hyperon decay, and magnetic moments—to show h
a chirally consistent picture emerges therein.

VI. AXIAL VECTOR CURRENTS

The baryon axial vector couplings are parametrized
terms of the samef A ,dA coefficients which appear in th
Hamiltonian of Eq.~5!. Defining the lowest order contribu
tion using the notationgA( ī j )5a i j , we have

apn5 f A1dA

aLS25
2

A6
dA

apL52
1

A6
~dA13 f A!

f

2-9
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aLJ252
1

A6
~dA23 f A!

anS25dA2 f A

aS0J25
1

&
aS1J05

1

&
~dA1 f A!.

~49!

It is these forms which are used in SU~3! fits to hyperon beta
decay.

The leading nonanalytic corrections from loops a
O(mP

2 ln mP
2) and were first calculated by Bijnens, Sonod

and Wise@7#. They have the form

gA~ ī j !5AZiZjFa i j 1
1

16p2Fp
2 (

k
b i j

k mk
2 ln

mk
2

m2G ~50!

with

bpn
p 5

1

4
~dA

31 f A
313dA

2 f A13 f A
2dA!2~dA1 f A!,

bpn
K 5

1

3
dA

32
1

3
f AdA

21dAf A
22 f A

32
1

2
~dA1 f A!,

bpn
h 52

1

12
dA

31
5

12
f AdA

22
1

4
dAf A

22
3

4
f A

3,

bpL
p 5

1

A6
S 2

3

2
dA

31
3

2
dAf A

21
3

8
~dA13 f A! D ,

bpL
K 5

1

A6
S 5

6
dA

32
5

2
dA

2 f A2
3

2
f A

2dA1
9

2
f A

3

1
3

4
~dA13 f A! D ,

bpL
h 5

1

A6
S 1

6
dA

32
3

2
dAf A

21
3

8
~dA13 f A! D ,

bLS2
p

5
1

A6
S 2

2

3
dA

312dAf A
222dAD ,

bLS2
K

5
1

A6
~dA

32dAf A
22dA!,

bLS2
h

5
1

A6
S 2

3
dA

3 D ,

bnS2
p

5
1

6
dA

32
1

3
dA

2 f A1
2

3
dAf A

21 f A
32

3

8
~dA2 f A!,
03600
,

bnS2
K

5
1

2
f A

31
1

2
dAf A

21
1

6
dA

2 f A1
1

6
dA

32
3

4
~dA2 f A!,

bnS2
h

5
1

2
dAf A

22
2

3
dA

2 f A1
1

6
dA

32
3

8
~dA2 f A!,

bLJ2
p

5
1

A6
S 2

3

2
dA

31
3

2
f A

2dA1
3

8
~dA23 f A! D ,

bLJ2
K

5
1

A6
S 5

6
dA

31
5

2
dA

2 f A2
3

2
dAf A

22
9

2
f A

3

1
3

4
~dA23 f A! D ,

bLJ2
h

5
1

A6
S 1

6
dA

32
3

2
dAf A

21
3

8
~dA23 f A! D ,

bS0J2
p

5
1

&
S 2 f A

31
1

3
f AdA

21
1

2
f A

2dA1
1

6
dA

3

2
3

8
~dA1 f A! D ,

bS0J2
K

5
1

&
S 1

6
dA

32
1

6
f AdA

21
1

2
f A

2dA2
1

2
f A

3

2
3

4
~dA1 f A! D ,

bS0J2
h

5
1

&
S 1

6
dA

31
2

3
dA

2 f A1
1

2
dAf A

22
3

8
~dA1 f A! D .

~51!

HereZi are the wave function renormalization factors, who
leading nonanalytic form is

Zi512
1

16p2Fp
2 (

j
k i

jmj
2 ln

mj
2

m2 ~52!

with k i
j given in Eq.~39!. These forms generate the corre

tions discussed in the Introduction.
When we apply the cutoff formalism we first note that a

of the nonanalytic behavior of the formm2 ln m2 comes
uniquely from the integral that we labeledJ(m) in Sec. III.
This means that all that we need to do in order to convert
analysis above to our formalism is to replacemP

2 ln mP
2 by

J(mP) everywhere throughout these formulas. We may ag
check the chiral consistency of the renormalization progr
by verifying that the contribution quadratic inL,

dgA
L2

~ ī j !5
L2

16p2Fp
2 (

k
Fb i j

k 2
1

2
a i j ~l i

k1l j
k!G , ~53!
2-10
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can be absorbed into renormalizations of the lowest or
axial vector couplingsdA , f A via

dA
r 5dA2

3

2
dA~3dA

215 f A
211!

L2

16p2Fp
2

f A
r 5 f A2

1

6
f A~25dA

2163f A
219!

L2

16p2Fp
2 .

~54!

Since such coefficients are determined empirically,
analysis with small meson masses becomes identical to
of the dimensionally regularized case.

In the case of a physically realistic cutoff,L
;300– 600 MeV, and the physical meson masses, we h

dgA~ ī j !5
1

16p2Fp
2 (

k
Fb i j

k 2
1

2
a i j ~l i

k1l j
k!G J̃~mk

2!

~55!

where we have again removed the asymptotic ma
independent component of the functionJ(M2) via

J̃~m2!5J~m2!2L2. ~56!

The numerical results using typical values of the cutoff
compared with those from dimensional regularization
Table II and again reflect the feature that the SU~3! chiral
expansion is now under control at least as far as long
tance effects are concerned—the ‘‘mystery’’ of the corre
ness of the simple SU~3! fit without chiral corrections is
resolved. A complete discussion of axial-vector current m
trix elements can be found in@14#.

VII. S-WAVE HYPERON DECAY

Chiral invariance relates theS-wave nonleptonic decay
amplitudes to the baryon-to-baryon matrix elements of
03600
er

e
at

e
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e

s-
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-

e

weak Hamiltonian. For the dominant octet Hamiltonian th
can be parametrized in terms of two SU~3! coefficients
f w ,dw :

A~Y i
j !5z~Y j

i ! ~57!

where

z~L0
0!52

1

&
z~L2

0 !52
1

2)
~dw13 f w!

z~S0
1!52

1

&
z~S2

2!5
1

&
~dw2 f w!

z~S1
1!50

z~J0
0!52

1

&
z~J2

2!52
1

2)
~dw23 f w!.

~58!

This yields a good fit to the data, including the chiral SU~3!
results given in Eq.~5!.

Proceeding to one-loop order, the leading nonanalytic c
rections are dependent uponmP

2 ln mP
2 and have the form

TABLE II. Nonanalytic contributions togA for various transi-
tions in dimensional regularization and for various values of
cutoff parameterL in MeV.

Dim. L5300 L5400 L5500 L5600

gA( p̄n) 1.72 0.37 0.53 0.69 0.84
gA( p̄L) 21.78 20.34 20.51 20.67 20.84

gA(L̄S2) 1.17 0.23 0.34 0.45 0.56

gA(n̄S2) 0.36 0.07 0.10 0.14 0.17

gA(L̄J2) 0.83 0.15 0.23 0.31 0.39

gA(S̄0J2) 2.46 0.45 0.68 0.91 1.15
A~Y j
i !5AZiZjF z~Y j

i !1
1

16p2Fp
2 (

k
r~Y j

i !kmk
2 ln

mk
2

m2G ~59!

with

r~L0
0!p52

1

2)
dwS 7

24
2

9

2
dA

22
9

2
dAf AD2

1

2)
f wS 7

8
1

9

2
dA

21
9

2
dAf AD

r~L0
0!K52

1

2)
dwS 2

5

12
1

5

2
dA

229 f AdA1
9

2
f A

2 D2
1

2)
f wS 2

5

4
1

3

2
dA

229 f AdA1
27

2
f A

2 D
r~L0

0!h52
1

2)
dwS 2

3

8
1

1

2
dA

22
3

2
dAf AD2

1

2)
f wS 2

9

8
1

3

2
dA

22
9

2
f AdAD

r~J0
0!p52

1

2)
dwS 7

24
2

9

2
dA

21
9

2
dAf AD1

1

2)
f wS 7

8
1

9

2
dA

22
9

2
dAf AD
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r~J0
0!K52

1

2)
dwS 2
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2
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2 D2
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&
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2
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2 D2
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&
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213dAf A1
3

2
f A

2 D
r~S0
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2
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2
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r~S1
1!p5r~S1

1!K5r~S1
1!h50. ~60!

The correction to the Lee-Sugawara relation is found:

)A~S0
1!22A~J2

2!2A~L2
0 !52A2

3

1

16pFp
2 H mK

2 ln mK
2 FdwS 9

2
dA

213dAf A1
9

2
f A

2 D1 f wS 3

2
dA

229dAf A2
9

2
f A

2 D G
1mh

2 ln mh
2FdwS 3

2
dA

22
3

2
dAf AD1 f wS 2

3

2
dA

22
9

2
dAf AD G

1mp
2 ln mp

2 FdwS 26dA
22

3

2
dAf A2

9

2
f A

2 D1 f wS 27

2
dAf A1

9

2
f A

2 D G J '26.431027. ~61!
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When analyzed using the physical values of the masses
uncover the problems described in the Introduction.

A very similar analysis obtains as was described in
situation for the axial vector currents. In the cutoff formalis
the nonanalytic pieces proportional tomP

2 ln mP
2 are simply

replaced by the functionJ(mP
2 ). Again, the chiral consis-

tency of the renormalization program can be verified by n
ing that for small meson masses the component quadrat
L,

dA~Y j
i !5

L2

16p2Fp
2 Fr~Y j

i !k2
1

2
z~Y j

i !~l i
k1l j

k!G , ~62!

can be absorbed into renormalized values of the lowest o
couplingsf w ,dw via

dw
r 5dw2

1

2
@dw~1113dA

219 f A
2 !118f wdAf A#

L2

16p2Fp
2

f w
r 5 f w2

1

2
@ f w~115dA

219 f A
2 !110dwdAf A#

3
L2

16p2Fp
2 . ~63!
03600
we

e

t-
in

er

Once this renormalization is accomplished, we exactly
cover the usual chiral analysis.

In the case of a physically realistic masses, we again
the same mass-independent renormalization to define th
sidual integralJ̃(m). The shift ins-wave amplitudes is then
given by

dA~Y j
i !5(

k
Fr~Y j

i !k2
1

2
z~Y j

i !~l i
k1l j

k!G J̃~mk
2!

16p2Fp
2 .

~64!

The numerical results are compared with those of dim
sional regularization in Table III and it is clear that on

TABLE III. Nonanalytic contributions tos-wave semileptonic
hyperon decay amplitudes in dimensional regularization and
various values of the cutoff parameterL in MeV.

Dim. L5300 L5400 L5500 L5600

A(L0
0) 23.57 20.62 20.95 21.30 21.65

A(J0
0) 1.96 0.36 0.54 0.73 0.92

A(S0
1) 21.57 20.26 20.41 20.56 20.72
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again the results are dominated by the lowest order SU~3!
forms—there no longer exist large chiral corrections.

VIII. MAGNETIC MOMENTS

The final case considered here is that of magnetic m
ments. The lowest order parametrization is given in Eq.~8!.
The leading nonanalytic chiral corrections are linear inmP
and were first calculated by Caldi and Pagels. They have
form

dm i5
M0

8pFp
2 (

j
s i

jmj ~65!

with

sp
p52~ f A1dA!2, sp

K52
2

3
~dA

213 f A
2 !

sn
p5~dA1 f A!2, sn

K52~dA2 f A!2

sL
p50, sL

K52 f AdA

sS1
p

52
2

3
~dA

213 f A
2 !, sS1

K
52~dA1 f A!2

sS0

p 50, sS0
K

522dAf A

sS2
p

5
2

3
~dA

213 f A
2 !, sS2

K
5~dA2 f A!2

sLS
p 52

4

)
dAf A , sLS

K 52
2

)
dAf A

sJ2
p

5~dA2 f A!2, sJ2
K

5
2

3
~dA

213 f A
2 !

sJ0
p

52~dA2 f A!2, sJ0
K

5~dA1 f A!2. ~66!

In this analysis, all Feynman integrals are given by
linear form calledK(m) in Sec. III. The general result ap
propriate for a cutoff regularization is obtained by replaci
the nonanalytic dependencemP by K(mP). We can then
verify that the leading term inL can be absorbed into th
renormalization of the chiral parameters, leading to an id
tical analysis for small values ofmP . In this case, examina
tion of the term in the magnetic moment shift linear inL,

dm i
L52

M0L

24pFp
2 (

j
s i

j , ~67!

shows that it is absorbed into renormalizations of the low
order parametersf m ,dm via

dm
r 5dm1

M0L

4pFp
2 dAf A
03600
-

he

e

-

st

f m
r 5 f m1

M0L

24pFp
2 S 5

3
dA

213 f A
2 D . ~68!

Since f m ,dm are determined empirically, the analysis is th
identical to that of the dimensionally regularized case.

On the other hand, with the use of a physically realis
cutoff and meson masses, the magnetic moment shifts ca
obtained by using the mass independent renormaliza
given by

K̃~m!5K~m!1
1

3
L. ~69!

The shifts in the magnetic moments are given by

dm i5
M0

8pFp
2 (

j
s i

j K̃~mj !. ~70!

The numerical results for this form for reasonable values
the cutoff are compared with those from dimensional re
larization in Table IV. Again the chiral corrections are n
longer out of control.

IX. SUMMARY

We have seen above that a significant component of
poor convergence found in previous calculations in SU~3!
baryon chiral perturbation theory is due to the inclusion
large and spurious short-distance contributions when l
processes are regularized dimensionally. The use of a
mentum space cutoff keeps only the long distance portion
the loops and leads to an improved behavior. Indeed,
though we have formulated our discussion in terms of mer
a different sort of regularization procedure within the gene
framework of chiral perturbation theory, it is interesting
note that our results are quite consistent with the sort
SU~3! breaking effects found in chiral confinement mode
such as the cloudy bag, when the effects of kaon and/or
loops are isolated@16#. It should be noted, however, that lon
distance regularization isnot a model. Indeed, it is the an
tithesis of a model, since it specifically removes the mod
dependent short distance component of loop diagrams.
contributions which are retained correspond to the long d

TABLE IV. Nonanalytic contributions to magnetic moments
dimensional regularization and for various values of the cutoff
rameterL in MeV.

Dim. L5300 L5400 L5500 L5600

mp 0.76 0.22 0.27 0.31 0.34
mn 20.22 20.12 20.14 20.15 20.16
mL 20.43 20.08 20.11 20.13 20.15
mS1 1.05 0.24 0.30 0.36 0.40
mS0 0.44 0.08 0.11 0.13 0.15
mS2 20.18 20.08 20.09 20.10 20.11
mSL 0.39 0.12 0.14 0.16 0.18
mJ2 20.52 20.10 20.13 20.16 20.18
mJ0 20.90 20.17 20.22 20.26 20.30
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tance portions of the loops and are essentially mod
independent.~In chiral perturbative language, they represe
a partial resummation of the chiral series and include pie
to all orders in the momentum expansion.!

It is perhaps surprising that we propose that a chang
the regulation scheme should improve the calculation. A
all, physical quantities are independent of the regulariza
procedure. However, this is only strictly valid for the fu
theory and true independence requires working to
orders—when working to any finite order in an effecti
theory, some regularization schemes will require large
rameters in order to approach the right answer~as detailed in
Sec. I!, while others can more easily reproduce the corr
physics with small values of the parameters. The cutofL
likewise should not play any role in the final answer.~Dif-
ferent values ofL are equivalent to different regularizatio
schemes.! Nevertheless, at any finite order some depende
on L will remain. Of course, if physical results displayed
strong dependence upon the choice ofL or upon the choice
of cutoff function, then this would signal a problem with th
use of such a procedure. However, we have explicitly v
fied that this is not the case. In Ref.@12#, for example, we
pointed out that the baryon masses can be represented b
essentially identical phenomenology for cutoffs chosen in
300 MeV,L,600 MeV range or for different choices fo
the cutoff function, and a similar small residual cutoff depe
dence is found for the remaining quantities discussed ab
In fact, in the case of baryon masses, the cutoff depende
is even smaller than anticipated—one might expect a dep
dence at the level of the size of neglected next order term
the energy expansion (;5 MeV), while a cutoff dependenc
shows up only at the;1 MeV level.

We might ask why baryon chiral perturbation theory h
se

-

03600
l-
t
s

in
r
n
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-

t

ce

i-

an
e

-
e.
ce
n-
in

s

this problem while mesonic chiral theories do not. Most a
plications in mesons work perfectly well using dimension
regularization. At first sight one might argue that the sepa
tion scale in baryons corresponds to lower energies bec
the physical size of baryons is larger than mesons. While
is a true statement, it does not really answer the quest
since the baryon problem surfaces entirely within the po
particle theory. For some reason, given the same me
masses, the loop corrections are larger in the baryonic p
particle theory compared to a mesonic point particle theo
This feature can perhaps be blamed on the baryon propag
in the loop integral which, being linear in the momentu
suppresses high momentum contributions less than a co
sponding quadratic mesonic propagator. However, the e
tence of the problem is beyond doubt, given the troub
discussed in the Introduction. Fortunately, we do not a
consequence have to abandon all such chiral calculation
revised regularization scheme seems capable of resolving
problem.

The simplicity that underlies baryon physics is more e
dent when chiral loops are calculated with a long-distan
regularization. In this context, we hope that baryon chi
perturbation theory will become more phenomenologica
useful. One can hopefully now use the chiral calculations
order to provide a model independent description of v
long distance physics, and this can be a welcome additio
our techniques for describing the low energy phenomenol
of baryons.
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