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The use of S(B) chiral perturbation theory in the analysis of low energy meson-baryon interactions is
discussed. It is emphasized that short distance effects, arising from the propagation of Goldstone bosons over
distances smaller than a typical hadronic size, are model-dependent and can lead to a lack of convergence in
the SU3) chiral expansion if they are included in loop diagrams. In this paper we demonstrate how to remove
such effects in a chirally consistent fashion by use of a cutoff and demonstrate that such a removal ameliorates
problems which have arisen in previous calculations due to large loop eff86556-282(199)00603-1

PACS numbsgs): 11.30.Rd, 12.39.Fe, 13.30.Ce, 13.30.Eg

I. PROBLEM However, this leads to worries about convergence. In any
event, the simplicity evident in baryon physics has become
The low energy phenomenology of baryons is relativelylost. In its conventional manifestation, then, @Ubaryon

simple. In the 1960s, this simplicity was evidenced by thechiral perturbation theory does not represent a good first ap-
successes of SB) symmetry. Indeed, masses and couplingsProximation to baryon physics.
can be well described by $B) invariant interactions with ~In this paper we will suggest a resolution to this problem
SU(3) breaking at the 5-25% level. In the present era wen terms of a reformulation of baryon chiral perturbation
have come to understand this invariance in terms of Qcrheory within a framework which is better suited to phenom-
and the underlying quark substructure of baryons~33U e€nological applications. Before we turn to a diagnosis, let us,
relations work because the effects of thei-d mass split- however, demonstrate the nature of the problem by observ-
tings are relatively small. Moreover, the quark model everiNd Several pertinent results. In each case we defer the spe-
allows us to understand many details of the pattern of3gU  Cifics of the chiral analysis until later in the paper and simply
symmetry breaking. Overall, most features of the static propduote results in order to convince the reader that a problem

erties of baryons are reasonably well understood. exists. .

It has also been realized that the old (SUresults repre- (i) Baryon masses can be understood by noting that the
sent merely the lowest order terms of an expansion in energgu@rk mass nondegeneracy arises from a componeft&f
and quark masses in a rigorous effective field theory frameWhich can be represented in terms of a Lorentz scaldB5U
work which exploits the(broken SU(3), x SU(3)g chiral octetqigq operator. To first order in symmetry breaking one
symmetry of the QCD Lagrangian. The higher order terms irf@n then write the baryon octet masses in terms of af8sU
this expansion can be calculated via the technique callethvariant termMg plus octetf,,,d;, couplings:

“chiral perturbation theory,” which has already been highly .

developed and successfully applied within the sector of My=Mo—4mzdn,+4(mz—m2)f
Goldstone boson interactiond]. In the related case of

baryon—Goldstone-boson interactions, there has also been a .

great deal of activity using methods generalized from the My=Mo— 5(4mﬁ—mf,)dm
purely mesonic situatiof2].

However, the problem is that traditional 8) baryon
chiral perturbation theory does not appear to work well. As
generally applied, it does not manifest the approximate .
SU(3) symmetry that one sees in the real world, in that Mz=Mqo—4midy,—4(mz—m2)f . (1)
SU(3) breaking corrections in loop diagrams often appear at
the 100% level. It is particularly distressing that these effectsSince the four octet baryon masses are represented in terms
come from the most apparently model-independent parts dgif effectively three parameters, there is a corresponding sum
the theory—the nonanalytic chiral loops. With some param{ule—that of Gell-Mann and Okub(8]:
eter fitting, it appears in practice that such effects can be 1 3
compensated for by positing equally large effects from the o T _ 2 _
effective Lagrangian at higher order in the chiral expansion. Ms=My=35(Mz=My)+ 7(Ms=My)
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Expt.. 254 Me\=248 MeV 2 of octet f,,d,, parameters: Such a representation yields a
very good fit to the experimental amplitudes in that the two
which is satisfied experimentally at the 3% level. independent predictiohs
When analyzed in the usual fashion in chiral perturbation . .

theory, however, this simplicity is lost. At one lod(q®) A(X7)=0 vs 0.1X10 " (expYy

order the chiral loop corrections are found to be extremely

large[4]: V3A(SS)—2A(EZ)-AA%)=0 vs 0.1x10°7 (expt
SMy=-0.31 GeV, SMsy=-0.67 GeV, (5)
SM,=—0.66 GeV, SMz=—1.02 GeV are, since the typical size of aswave amplitude is~4

3) X 1077, both reasonably well satisfied by the data.
In baryon chiral perturbation theory, the chiral loop cor-
such that, e.g., th& mass receives a 100% correction. This rections to individual terms are found to be at the 30-50%

calculation has also been carried out@gq*) by Borasoy !evel [7], and a large correction to the Lee-Sugawara relation
and Meissnef5], who quote their results as is found:

J— +y =\ 0 ~ — 7
My=M(1+0.34-0.35+0.24) V3A(Zo)m2AE)~AAZ)~ - 641070 (B)

which is in considerable disagreement with the experimental

Ms=M(1+0.81-0.70+0.44 number. The other lowest order predictiéy(2 T)=0, is not
affected by chiral logarithms.
M, = M(1+0.69—0.77+0.54) One can also see the problem with the chiral convergence

of individual terms. Indeed, a comprehensive analysis of the
_ problem up to second order counterterms has been ¢8jen
Mz=M(1+1.10-1.16+0.78 (4)
A(AJ)=2.351+0.62—0.65x 10"’
where the non-leading terms above refer to the contribution
from O(g?) counterterms, nopanalytic pieces(@(q3), and_ A(S{)=3.091+0.30-0.32x 107
O(g*) counterterms respectively. Obviously, the contribu-
tion from higher order terms is far larger than one expects
and the series does not display obvious convergence. Also,
the Gell-Mann—Okubo deviation is found to be 5 times 0 B
larger than experiment. A(E)=3.061+0.40-0.36x 10"’ (7)
(i) Baryon axial vector couplings can be related by noting

that the weak axial current arises from an (S3lJoctet Where the various contributions are from lowest order,
q’ v, vsq structure. Thus to leading order in 8) the vari- nonanalytic components, and next order counterterms re-
ous weak matrix elements can be represented in terms &pectively.
simplef,,d, couplings. A fit to the ten experimentally mea-  (iv) Hyperon magnetic moments can be related to one
sured semileptonic hyperon decay rates is found to yield rezanother since they arise from an &Y octetq’y,q struc-
sonable results, witly?/Npe~1. SU3) breaking in the de- ture. Then to leading order the moments can be written in
cay rates is noticeable, but the amount of($breaking is  terms of simplef ,,d, couplings:
never above 5%6]. One can explore quark models and find

AZT)=0x10""7

that they generate breaking that is of about this magnitude, 1

and the challenge then is to fit the pattern of breaking. mp=ps+=zd, 41,
When chiral loops are calculatéd], one finds a logarith-

mic dependence on the meson masses that leads to signifi- 2

cant SU3) breaking. Typically these effects are too large. Mn=2U\=pz0=— §dM

Numerically, choosing a renormalization scate-1 GeV,
typical leading logarithmic corrections are found to be at the
30-50% level and a fit to the experimental hyperon decay
rates finds a much increased chi-squared—the chiral correcNote that the second of these results is the Lee-Sugawara sum
tions go in the wrong direction. rule [8].

(i) S-wave nonleptonic hyperon decay amplitudes can be 2 js of course, possible to apply a similar analysis to the corre-
related by using the feature that the octet component of thgpondingP-wave amplitudes. However, in this case the leading
weak Hamiltonian is dominant over its 27-dimensional coun-iece of each amplitude involves a significant cancellation from
terpart by a factor of 20 or so, plus using chiral symmetry tofrom pairs of baryon pole diagrams, so that there is large and very
relate the experimental pion decay amplitudes to simplemodel dependent sensitivity to higher order chiral contributions.
baryon to baryon matrix elements. This allows a fit in termsThus we do not analyze this case.
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sionally. We propose that we should keep only the long dis-
Ms-=pz-= §dﬂ— fu tance parts of the loops, and propose a cutoff regularization
that accomplishes this.

Uas =V3uso= id . (8) Il. EFFECTIVE FIELD THEORY: SEPARATING LONG
a AND SHORT DISTANCES

The experimental moments are in approximétet not out- Effective field theory is a technique for describing the low
standing agreement with these predictiof#lthough it is ~ energy limit of a theory. It is an “effective” description
not relevant for our considerations here, we note that th&ecause it uses the degrees of freedom and the interactions
heavier mass, and hence the smaller magnetic moment, #fhich are correct at low energy. All the features of the high
the strange quark explains most of the observeBghteak- ~ €nergy portion of the theory are captured in the parameters of
ing.] a general local effective Lagrangian which describes the low
Again the chiral corrections are large and harmful. Nu-energy vertices. Using these interactions one treats the low
merically, picking a renormalization scaje=1 GeV, the €nergy dynamics in a complete field theoretic description.
nonanalytic corrections are at the 50-90% level, and make Within such a treatment, one encounters loop diagrams, in
enormous modifications of the lowest order results. Agwhich the integration over the momenta includes both low
shown by Caldi and Pagels, there remain three relation€nerdy and high energy components. While the low energy
which are independent of these corrections and are in fadtortion is fully correct within the effective theory, the high

reasonably well satisfied by the experimental nump&€§  energy portion is not. One might worry then about the inclu-
sion of such incorrect high-energy or short-distance physics

MUs+= =20\~ s, present in loops. However, this is not a problem in general

since this high energy effect has the same structure as the

M0t pus-+ un=247— Mp, terms in the general local Lagrangian, meaning that any in-
correct loop contribution can be compensated for by a shift

MA— Vs =pzot py. (9)  of the parameters of the Lagrangian. As an example, the

ultraviolet divergences in the effective theory are all ab-
However, other relations pose significant problems for exsorbed by defining renormalized parameters.
perimental agreement. Meissner and Steininger have per- In practice, there is a situation where such loop effects
formed anO(q*) analysis of the problem and have shown cancause problems. This occurs if the residual short distance
that it is possible to get good agreement via a careful choiceontributions are large eveafter renormalization. A large
of countertermg11]. The convergence of the chiral expan- and incorrect short distance effect can still be removed by the
sion is again a possible problem, as the contributions ofdjustment of parameters, but those parameters must conse-
terms of successive orders is found to be quently also be large. We then obtain an expansion which is
of the form
mp=4.691—-0.57+0.16=2.79
M~Mg(l—1+1-1+---) (11
mn=-—2.8541-0.36+0.03 =-1.91
where each term in the expansion is sizable and there is no

ws+=4.691—0.72+0.24 =2.46 clear convergence. If one were able to carry out the process
to all orders, one would, of course, still get the right answer.
wso=1.431-0.93+0.38=0.65 However, at any finite order, the incorrect short-distance
physics in loops has obscured the answer and the expansion
ws-=—1.831—-0.41+0.04=—1.16 is useless. While not formally “wrong,” this procedure is
ineffective, which is certainly a poor trait for an effective
was=2.411—0.57+0.18 =1.51 field theory. . . _
In SU(3) baryon chiral perturbation theory, exactly this
u=o=—2.851—0.95+0.39 = —1.25 situation occurs when the theory is regularized dimension-
- ally. We will show that the poor convergence described in
wz-=-1.831-0.57+0.18 = —0.65. the Introduction follows largely from the short-distance com-

(10) ponent of loop diagrams. In order to provide a more effective
description, we will then reformulate the theory using a cut-
We see in each case then that the chiral corrections ameff which retains only the reliable—long-distance—portion
large and in each situation the leading nonanalytic compoef loop diagrams. This will result in improved phenomenol-
nents destroy the good experimental agreement which existgy. Baryon effective field theory becomes even more effec-
at lowest order. There is something clearly ineffective aboutive with a long-distance regularization scheme.
this procedure. For a technique that has aspirations of rigor, In baryon chiral perturbation theory, the transition be-
this is a dismaying situation. We will show below that the tween short and long distance occurs around a distance scale
problem resides in a spurious short-distance contribution thaif ~1 F, or a momentum scale of 200 MeV. This corre-
appears in loop diagrams when they are regularized dimersponds to the measured size of a baryon and we will refer to
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it as the separation scale. The effective field theory treats the 0.25

baryons and pions as point particles. This is appropriate for  j(m)[GeV?]

the very long distance physics—the “pion tail” is indepen-

dent of whether the baryon is treated as a point particle or an

extended object. However, for propagation at distances less

than the separation scale, the point particle theory does not

provide an accurate representation of the physics—the com-

posite substructure becomes manifest below this point. 0.15
In the next section we focus on the specific Feynman

integrals that arise in baryonic calculations. Our goal is to

understand the structure of loops in this effective field theory

by separating the short-distance and long-distance physics

within the loop integral. The use of a cutoff representing the

separation scale will allow us to show that the long distance

physics is well behaved, and that dimensional regularization 0.05

in practice contains large short distance contributions for

these particular integrals.

0 0.1 0.2 0.3 0.4 0.5 0.6
m[GeV]

. ANATOMY OF FEYNMAN INTEGRALS

We begin by performing an autopsy on a particular Feyn- _ _ _
man integral that appears in the baryon mass analysis. Con- FIG. 1. The integral (m) for the case of dimensional regular-

sider the integral ization (| =mq) and in the cutoff scheme with =400 MeV.
d*k kik I(m) greatest for masssless Goldstone bosons. However, the form,
J 2 & —ie)(kzl—m2+ » =—i 8 Eym (12 Eq. (12), vanishes for massless patrticles and is very small for
0

small meson masses.

These are all indications that an overall subtraction has
taken place which confuses short and long distance physics.
We cannot count on the dimensionally regularized form to
yield only long distance physics—an implicit short-distance
contribution is carried along also.

Now let us isolate the long distance component of the
integral. Indeed it is possible to remove the short distance

ortion by use of a cutoff regularization, as we demonstrated
n Ref. [12]. Although an exponential cutoff in three-
momentum was employed therein, for our purposes it is most
convenient to employ a simple dipole regulator

A2 )2

where the right hand side simply defines the functiom).
When regularized dimensionally this has the value

Idim-re(.;(m):ma- (13

This integral is uniquely the source of nonanalytic correc-
tions to baryon masses.

Some comments about the dimensionally regularize
form are instructive.

(i) The Feynman integral is cubicly divergent at high en-
ergy. However, a peculiarity of the dimensionally regular-
ized form is that the result is finite. This is not a problem and
occurs at other times in dimensional regularization. How-
ever, it is one indication that this regularization scheme im-

plies a particular short distance subtraction, which will insjnce it enables loop integration to be carried out in terms of
general leave behind finite effects from short distance physsimply analytic forms. However, the specific shape of the
ICS. cutoff is irrelevant—a consistent chiral expansion can always

(i) The only scale in the integral is the meson Mass e carried out to the order we are working in.
Therefore the relevant momenta in the integral all scale with  The introduction of the dipole cutoff, Eq14), yields

m also. In the limit thatm is very large, all of the relevant
momenta correspond to high-energy and short-distance. This d*k kik;
is an indication that as grows the dimensionally regular- f (2m)* (ko—i€)(K2—m?+ie)
ized integral becomes totally dominated by short distance
physics—below the separation scale. o a(m)
(i) If we are interested ionly the long distance compo- = 1o o
nent of the integral, this portion would fall off with increas-
ing mass. At largen the meson progagator could be approxi- where
mated by a constarte.g., as we do for the/-boson mass in
low energy weak interactiopsind the low energy portion of
the integral would fall as h#?.
(iv) We would expect that the long distance portion of the
integral would be largest for the smallest meson masses, andarious comments on this form are appropriate:

ATie a9

A2 2
AZ_ kZ)

(15

42m+A

1
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(i) This integral is plotted in Fig. 1 forA =400 MeV, , .
along with its dimensionally regularized analogue. We see (™ ) [GeV?]
that the cutoff result is much smaller than that of dimen- 0.1
sional regularization for kaon and eta masses. Moreover,
what matters for S(B) breaking ardlifferencesn the inte-
gral between pions kaons and etas, since a constant effect
can be absorbed into chiral parameters. This difference is
quite small for the cutoff version. We conclude that most of
the dimensionally regularized Feynman integral for kaons 01
and etas corresponds to short distance physics.

(i) The greatest contribution at long distance is seen in
the cutoff scheme to come from massless mesons, as ex-

0.1 0.2 0.3 0.4 0.5 0.6
m [GeV]

pected. As the meson mass increases, there is a decreasing -2
effect from the long distance portion of the integral.
(iii) We observe then that in the small mass limit -
m<A 1
[(m) —>§A3— EAm2+m3+--- ; (17)

FIG. 2. The integrall(m?). The lower curve is the result in
i.e., I(m) reduces to the dimensional regularization resultdimensional regularization, whereas the upper curve shows the case
m?, plus polynomial terms inA which are absent in the of the cutoff scheme witth =400 MeV.
dimensional approach. In the next section, we will see ex-
plicitly how these polynomial terms can be absorbed in the d*k kiK; A2 \2
renormalization of chiral parameters. f (2m)? (ko—i€)2(K2—mZ+ie) (Az_kz)
(iv) In the opposite limit of a large mass compared to the

cutoff Ja(m?)
=—1 5” Tcﬂ'z (21)
A<m A4 3 A5
(m) —— =5t (18 with
A*m? m? A4
the functionl (m) is found to depend upon the pseudoscalar Jy(m?)= (22

N =+ .
2_2\2 2 2_ 2
mass to inverse powers, meaning that the pion will contrib- (AT=m)= A% AS—m

ute much more than its heavier eta or kaon counterparts, We plot these forms in Fig. 2. The behavior is qualitatively

we expect intuitively. similar to that which occurred with the previous integral—

Our conclusion from studying the integral, EQ2), is the dimensional form overstates the amount of BWreak-

that the cutoff scheme picks out the long distance part of th?ng. In addition the growth in the magnitude of the integral at

mtegrali V\t/rf:lcf:j_behav_es alsfexpecteq on p?%/ S.'tc‘."ll glr.oyinds.d II'&rge masses indicates that short distance physics dominates
contrast, the dimensional form carries with it implicit and - dimensionally regulated form.

large contributions from short distance physics. It is not sur- .
prising then that the large short distance effects dominate th The small and large mass limits of the cutoff form are

: X ; s iven by
analysis when dimensional regularization is employed an
we will demonstrate this explicitly in the next sections. m2< A2 m2
Before returning to the physics, we analyze the other Jm?) — A2+m?In—+-+- (23
Feynman integrals which arise in the analysis of baryon A
physics. In the case of baryon axial couplings ardave d
hyperon decay the relevant heavy baryon integral which gen-
erates the nonanalytic terms inf In n? is m?>A2 A4 2
J(m?) —— —In— -+ (24)
f dk kik; ) (m m* A2
2m)® (ko—102(E—m?tie) '16m7" so that again our intuitive expectations are met.
(19 Finally, we consider the integral which is relevant in the

. . o . analysis of the magnetic moments:
In dimensional regularization the integral has the value

d*k kik; . K(m)
m2 f 4 T 2 2, 2:_|5ij—'
Jim reg(mz):mz |n;2_ (20) (2m)* (kg—ie)(k*—=m*+ie) 167 25

while the cutoff version is given by The dimensionally regularized form is given by
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0.6 Field theories can be applied with a variety of regulariza-
K(m)[GeV? tion methods. In the end, the resulting physics should be
- independent of the choice of regularization scheme. At first
sight this suggests that it is unlikely that simply employing a
change in regularization can have any impact on the prob-
0.4 lems mentioned in the Introduction. However, we will see
that the choice of a cutoff with a value around the separation
0.3 scale will amount to a partial resummation of the chiral ex-
pansion and that this can be done without losing the gener-
0.2 ality of the effective field theory treatment. If we are right in
our assessment that the problem is caused by spurious loop
effects below the separation scale, this resummation can then
0.1 lead to an improved procedure for phenomological applica-

tions.

We will first show explicitly how the standard chiral ex-
pansion is exactly reproduced for small values of the meson
masses. A key ingredient of this demonstration is the renor-
malization of the chiral parameters. The loop integrals will
often depend strongly on the value of the cutoff, and we will

FIG. 3. The integral(m). The upper curve is the result in encounter integrals withh3, A2, A and InA dependences,
dimensional regularization, whereas the lower one shows the casghere A represents the momentum space cutoff. However,

of the cutoff scheme witt\ =400 MeV. this does not mean that the resulting physics will depend on
the cutoff this strongly. Indeed, the final physics is indepen-
Kgim reg(m)=m. (26) dent of A. This occurs because the termsArhave a chiral

SU(3) dependence which is the same as the various terms in
Once again, the integral shows no sign of its true linear dithe effective Lagrangian. Therefore, in physical processes
vergence, and grows at large valuesnof indicating short  one can absorb thi& dependence into a renormalized value
distance dominance at large. The use of the dipole cutoff of these parameters, e.g.
yields

1 1 ci®"=ci+ - (30)
—— A4 ! 167’

for some specific coefficiert; . (Here y; is a number to be
“calculated in the renormalization procesall phenomenol-

Ygy can be expressed in terms of the renormalized param-
distance portion of the integral is well behaved and that di- 9y b P

. o L eters and the strong? dependence of this example would
mensional regularization overstates the$reaking in the have vanished. Wh%n thep meson masses are sr?1a|l we will
integral. The functionrK(m) has the small and large mass y

Taylor expand the loop integrals, renormalize the chiral pa-

which is plotted in Fig. 3 and is there compared to the di

limits rameters and recover exactly the usual results.

e 1 qu realistic phenomenology, however, we need to use the
K(m) CA4ma-- (29) physical valqes of.the meson masses. The kaon and _eta

3 masses are in reality not small compared to the separation

scale. They are also not so large that all of their effects can

and reliably treated as short-distance and hence be built into the
parameters of the effective Lagrangian. We do need to treat
msA A them as dynamical degrees of freedom and include at least

K(m) —— - a3t (29 their long distance effects. When we use a cutoff regulariza-

tion, with a cutoff close to the separation scale, the loop

which have the expected qua“tative forms. integrals will be the nonlinear functions of the mass, as de-

scribed in the previous section. When these are evaluated at
the physical meson masses, this will generate effects that are
equivalent to higher orders in the chiral expansion. Thus this

In the previous section, we used a cutoff as a tool tdform of regularization can be viewed as a partial resumma-
explore the long-distance portion of loop integrals. Since weion of the chiral series. If we continue to treat the problem in
find the long-distance portion to be well behaved, we suspedull generality, we will still need to include chiral parameters
that the problems described in the Introduction are in facin the effective Lagrangian which will allow us to continue
caused by the spurious inclusion of short-distance effectdo be fully model-independent. In each of the sections that
We then turn to a different use for the cutoff—as a regular-follow, we will explore the phenomenology at physical val-
ization technique for handling loop integrals. ues of the meson masses.

IV. THEORY AND PHENOMENOLOGY WITH A CUTOFF
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The cutoff A should not be taken so low in energy that it When the interaction piece of the Lagrangian involves time
removes any truly long distance physics. Also, while it canderivatives, the canonical momenta will also carry portions
in principle be taken much larger than the separation scal&f the interaction so that in forming the Hamiltonian, the
this will lead to the inclusion of spurious short distance physinteraction Hamiltonian will no longer be simply the nega-
ics which can upset the convergence of the expansion. It iive of the interaction Lagrangian. Since perturbation theory
ideal to take the cutoff slightly above the separation scale sgnd the Feynman rules are formulated from the interaction

that all of the long distance physics, but little of the shortHamiltonian, the canonical formalism will involve some
distance physics, is included. modified (and non-covariantvertices. At the same time, the

This procedure is not a model. Indeed its purpose is tdresence of time derivatives in interactions will act on the
remove the model-dependent short distance portions dime .orderlng_ln _propagators to produce further non-
ovariant contributions to loop procesgé$]. These modi-

l;?]%?,;l ';(;\;\;el;llgiélrt ?ﬁgeéiur tso;;) %?ussotﬁgtr&i;gségagrg?E[ﬁ;nﬁca.tions do.not always canpel but can leave a residpal inter-
choice of cutoff fu'nction If tﬁe form of this function or the action. While one can simply _calculate .th|s using the
N . ~_straightforward but clumsy canonical formalism, the authors
value of A playgd a major role in the. phenomenology, thISof Ref.[15] show that one can use the naive rules if one adds
would be a serious drawback for this approach. However, gnecific” contact interaction proportional 8(0) to the
renormalization theory leads us to expect that the deperkgynman ryles of the mesonic part of the theory. When using
dence on the cutoff should be quite mild in phenomenologiimensional regularization, one of the peculiarities is that the
qal applications. This is because t_he cuttihd thg fUF‘C' regularized value o#*(0) is equal to zero. Therefore the
tional dependengean be absorbed in the renormalization of contact interaction vanishes and we may proceed using the

the chiral parameters. If one worked to all orders, all depeng, 5y e Feynman rules when calculating dimensionally. How-
dence would disappear. If one is working to a given finiteg, o \ith a momentum-space cutoff, one hgf¢0)~ A*
ohrder, the (rjesuz)ual dzpﬁndenceh!shexpec_ted tok_occur %rjly ahd one gets a nontrivial modification quartic in the cutoff.
the next order beyond that at which one is working at. SINCerp;q jnf ences the purely mesonic sector of the theory. We
it appears from the above analysis that the cutoff integralg, e yerified, however, that the baryonic processes that we

are rather slowly varying functions qf the mass, we eXPectynsider are not modified by this feature at the order that we
that working to an order where one includes the firs{f@U are working

breaking parameters should be sufficient to minimize the cut- We now explore several specific cases of the physics of

off dependgnce to an acceptable value. . Igop processes in baryon chiral perturbation theory. Our pro-
Another issue that we should address here is the nature @hdure in each case is the same. We take the known results

the energy expansion in .SUCh a procedure. 'When USINg & 3 standard analysis of the one-loop amplitudes and re-
rggularlzatlon scheme wh|c_h does not contain any d'menéxpress it in terms of the Feynman integrals that we have
sionful parameters, there is a particularly simple powery,, ;64 \We then show how the renormalization procedure
counting proceQure which determines Fhe_order of Cont”buis accomplished with a cutoff, absorbing the leading cutoff
tions of loop diagrams. If the regularization scheme doegyqengence into renormalized parameters. In each case this

mIVO{X/e a r|1|1ass pﬁrametlgar_, Ith|bs Icountlniwllll not directly a.ﬁ'reproduces the standard analysis for small values of the me-
ply. We will see this explicitly below as the loop process Wil i masses. Then we turn to a realistic case of the physical

renormalize chiral parameters at different orders in the eNmeson masses and a finite cutoff. In this situation. the pres-
ergy expansion. As one goes to the next order in 100ps, ONgpce of the cutoff only permits the long distance loop effects,

will havg to perform t_h|s renormalization again order by or- and this leads to the much more moderate effect of loops
der. This, however, is not a fundamental problem. As we

> ‘"compared to the results quoted in the Introduction.

show, for small values of the meson masses we obtain ex-

actly the same results as in other regularization schemes. V. BARYON MASSES

Therefore, we can use the small mass limit to set up the

chiral expansion and determine the order of the loops that In this section we return to the physics of chiral loops, as

one should include. Subsequently taking the masses to thelfustrated in the analysis of baryon masses, and deal with

physical values will accomplish the partial resummation ofspecific numerical results. This has already been discussed in

effects described above. However, the procedure in terms dfef.[12], but it is pedagogically useful to revisit the analysis

which loops to include need not be changed. in the present context. This will clearly illustrate the renor-
There is one special feature involved in doing chiral per-malization program and the isolation of long-distance loop

turbation theory with a cutoff instead of dimensional regu-effects.

larization. This involves an occasional change in the Feyn- To lowest and next leading order in the derivative expan-

man rules due to the presence of derivative couplings. Theion the effective Lagrangian which describes the interac-

analysis of this aspect goes back to a classic paper on tfns of baryons can be written, in the heavy baryon formal-

subject[15]. Recall that in the canonical construction of a ISm, as

field theory, one forms the canonical momenta conjugate to

the field variables via LyB=Tr Biv-DB+da Tr BS*{u, ,B}

sr +f, Tr BS[u,,B]+d,, Tr B{x, ,B}

0= S b ()

(31) +f, Tr B[x+ ,B]l+bo Tr BB Tr y, - (32
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wherey, is given in terms of the quark mass matnxvia 9 1
T 2 K 2 2
X+ =2Bgm, K= Z(dA_fA) , KE=§(5dA+ 6dafat+9fa),

1
— Tt
Du=d,+ 5lutd,ul (33 KL= (dpt 3fp)2. (39)

's the covariant derivative, and This produces the large mass shifts quoted in @g. The

i violation of the Gell-Mann—Okubo relation is given then by
S ZE}ISUM,,U" (39

" 1
. . o _ _ Z[3MA+M2—2MN—2ME]
is the Pauli-Lubanski spin vector. The nonlinear mesonic

chiral constructsi,u, are given by d2-3f2

= WMmﬁ—Bmf’]— mi] (40)

i
U:UZZGXF{F_W ; )\J¢J

., u,=iuTg,uu’. (35
The deviation from the Gell-Mann—Okubo relation due to

) ~ loops is found to be quite small, primarily due to ttaeci-
Here Mo, fr,dm,bo are free parameters in terms of which genta) feature thatl2 —3f2~0.02<1.

the tree level contribution to the baryon masses can be writ- \ye now turn to an exploration of the analysis using a

ten as given above in E@l) with cutoff regularization. The first task is to see how the renor-
. —_— malization program works, in order that we obtain exactly
Mo=Mg—2(2mi+m7)bg. (36)  the same result in the limit of small masses. The diagrams

involved are the same as in the previous analysis, but we
If we continue the analysis to higher order, we include theytjlize the cutoff form for the Feynman integral. This is sim-
effects of quark loops and of the higher order terms in ayy done by replacingm? in Eq. (38) by the function
general Lagrangian. In an expansion in quark mass we havieA(mzp), expanded as in E4L7). The one loop contribution

the schematic form to the mass then has the schematic form

Mg=Mg+ >, agmy+ D, bgmg2+ D, cqmi+--- . 1 I O T T
= Mo™ 2 8gMg T2/ BgMg™+ 2 CqMy oM, = Z%Fi; wl| 5 A3 SAMEF M|
(37) (41)

Here, the terms linear in the quark mass are those para
etrized in Eq.(1), where we recall tham,%~mq. The next
term in the expansion is nonanalytic in the quark mass an
comes uniquely from loop diagrams. Finally the terms a
ordermg come from yet higher order effects which we will
not explicitly consider here. 3

The one loop chiral corrections are well known and in- 5M{‘ = Z Ki (42
volve the integral given in Eq.12) of the previous section. T
In dimensional regularization this yields termswhﬁ, and can
be represented as

najbviously the term irmf’ is identical to that arising in con-
ventional dimensional regularization, but more interesting
Qre the contributions proportional t&° and toAm%. The
tpiece cubic inA has the form

and is independent of baryon type—it may be absorbed into
a renormalization oMy:

M= — ! > kim? (38) ‘ 2, o2 °
! 24mF2 4 T Mo=Mo—(5d3+9f3) 1487F2° (43
with On the other hand the terms linearAn
T 9 2 K 1 2 2 A .
k=7 (dat fa)% k=5 (503~ 6fada+9f7), 5MiA:—f49m|: > «m?, (44)
o

must be able to be absorbed into renormalizations of the
coefficients involvingm,, and indeed this is found to be the
case—one verifies that

1
Ki=7 (da=3fn)?

kI=(da+6f3), xK=3(da+f3), «xI=d3 af2
A~ YA
128nFiA

T 2 K_ 42 2 7_ 42 d:n::dm
KA=3dA’ KAZdA+9f y KAZdA
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TABLE I. Nonanalytic contributiongin GeV) to baryon masses no longer exists a problem from the calculable and model-
in dimensional regularization and for various values of the cutoﬁindependent long distance component.
parameterA in MeV. A good fit to the baryon masses can be accomplished for
any value of the cutoff in the range that we consider. For
Dim.  A=300 A=400 A=500 A=600  example, withA =400 MeV, we have the masses described

N  -031 002 0.03 0.05 007 by
3 —-0.62 0.03 0.05 0.08 0.12 _
A —0.68 0.03 0.06 0.09 0.13 My=1.143-0.237+0.034=0.940
(=] —-1.03 0.04 0.08 0.12 0.17
Ms=1.143-0.005+0.053=1.191
fr_g 5dafa M,=1.143-0.086+0.057=1.114
meIm1927F2
Mz=1.143+0.106+ 0.077=1.326 (48
r 13d3+9f4 A
bo=bo— 57677—|:2A' (45 where all numbers are given in GeV. In Ed8), M, is the

first term, the second term comes from the leading tree level
That such renormalization can occur involves a highly con—SU(3) breaking due to quark masses parameirized as in Eq.

strained set of conditions and the fact that they are satisfied %\)/;ntc(jertrgi Igg; :ﬁéﬂggﬁ;ﬁ;@iﬁutﬁél_?\loenzgicézli;l;i?% tree

a significant verification of the chiral invariance of the cutoff gl_hile the loop effects contribute only 43 MeV. The chiral

procedure. Of course, once one has defined renormalized ¢ S ,
efficients, since they are merely phenomenological param?XpanSIon is well-behaved—loops do not upset the basic pat-

eters which must be determined empirically, the procedure igern .‘;‘t lowest order aqd the approxmate(S)Unvr?rlanlce IS
identical to the results of the usual dimensionally regularize<{nanl est. In order to dlsgntangléo andby, one has also to
technique when the masses are smaller than the cutoff. ake, e.g., therNa-ter_m into accounf13] .

Having convinced ourselves of the chiral invariance of the .If we had used a Fj|fferen_t va_lue of the cutoff in the regu-
cutoff procedure to the order we are working, we can nOV\)arlzatlon, the_ specific contributions would have been differ-
apply it to the case where masses are their physical valu t, yet the final answers change by less that 1 MeVAfor

and the cutoff is taken to be phenomenologically relevant— oM 3.00 MeV to 600 Me_V. This is a demo”?‘faﬂof‘ of the
i.e., A=1/rg)~300—600 MeV. However, we first remove cutoff independence of this procedu(®ur previous discus-

the asymptotic mass-independent component of the functioﬁig:(::ugg;i:gntthg r\?:ae Iseg(t);(;dh?%veer ?rtég? tae r?#;Of\ivgiiﬂeirr]\-
I(m) by defining q g 9 :

this case would have been of order 5 MeV. In practice we
1 found less dependence than th&tle have also verified that
T(m)=I(m)— =AS (46)  We obtain identical results for another form of the cutoff
2 function[12].

Having seen how the cutoff procedure can be successfully
since these effects can be absorbed itg and give mis-  applied in the case of the baryon masses, we can now move
|eading indications about the size of the nonanalytic eﬂ:ect%n the the remaining app”cations_axia' Coup”ng, non|ep-
in the |arge cutoff limit. The size of the |Ong distance tonic hyperon decay’ and magnetic moments—to show how
nonanalytic contributions to the baryon masses is then giveR chirally consistent picture emerges therein.
by
VI. AXIAL VECTOR CURRENTS

== T(m:
oM; 24mF:, 2 al(m) (a7 The baryon axial vector couplings are parametrized in
terms of the saméd,,d, coefficients which appear in the
and the corresponding numerical results are given in Table fHamiltonian of Eq.(5). Defining the lowest order contribu-
A careful look at these findings reveals that the quantitativetion using the notatioga(ij)= «;;, we have
results are in agreement with our qualitative expectations—
for a reasonable value of the cutoff parameteithe overall apn="Tat+da
size of the nonanalytic corrections is much smaller that that
found in the dimensionally regularized case since the short 5
distance contribution from kaon and eta loops is much re- aps-=——d,
duced. There is no longer any in principle problem with the J6
convergence of the chiral expansion and the “mystery” of
why the lowest order fit linear img works so well is re-
: : 1
solved. Of course, one still must include the model- apr=— —=(da+3f,)
oo . pA A A
dependent contribution from short distance effects, but there 6
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1
a’AE’:_%(dA_:ﬁA)
aps-=dp—f,

! ! (da+fa)
A0z -= _— Ay +50= — .
505 V3 S+EO 3 AT TA

(49

It is these forms which are used in &)fits to hyperon beta
decay.
The leading nonanalytic corrections from loops are

O(m3 In m3) and were first calculated by Bijnens, Sonoda,
and Wiseg[7]. They have the form

— 1 mg
gA(I])Z\/ZiZj aij‘l']-GTz'ZFﬁ; ,Bﬁmﬁ |n;2' (50)

with

p- 1 3, ¢3 2 2
Ban= 7 (d3+ fa+3dAfa+33da) — (da+ fa),
1 1 1
Byn=30a— 3Tada+ dafi—fA— 5 (da+fa),

1 1
Bpn=— 1_2d/?§+ 1_2fAd,2L\_ ZdAf/za_ Zfi,

_ 1( 3,3 ., 3
ﬂpA:% ~ 5 Uat S dafat g(dat3fa) |,
1 /5 5 3
Bor= NG (gdf\— Sdafa=5fadat 5 fA
3
+Z(dA+3fA) y
11, 3 , 3
BgA:% gdA_EdAfA+§(dA+3fA) ’
™ 1 2 3 2
ﬁAE,:% _§dA+2dAfA_2dA ,
K 1 3 2
IBAE*:%(dA_dAfA_dA),
1 /2
_ 3
BXE‘_%(gdA ’
T 1 3 1 2 2 2 3 3
BnE*:gdA_gdAfA+§dAfA+fA_§(dA_fA)'

PHYSICAL REVIEW %9 036002

K

1,1 , 1, 1,3
Bns-= 5 Tat 5dafat gdafat gda— 7 (da=Ta),

1., 2, 1.3
Bns-=5dafa— gdafat gda—g(da=Ta),

i 1( 3,3, 3
ﬂAE—:% _sz+§fAdA+§(dA_3fA) .

1(5., 5 3 9
K
N (gdi+ Sdafa— 5dafa—5fA

3

+Z(dA—3fA)),
, 11,3 , 3
ﬂAE,:% gdA_EdAfA+§(dA_3fA) )
. 1 1 1
Bloz-=— —fa+ 3fadi+ 5 fadat

3

_g(dA+fA))v

1(1., 1 1 1
3505;5 sdA—gTadat 5Tada— 5 1A

3

_Z(dA+fA))r

1., 2 1 3

BQOEFE 5d§\+ §d,§fA+§dAff\—§(dA+fA) .

(51

HereZ; are the wave function renormalization factors, whose
leading nonanalytic form is

2

Zi:l_m; KfI'T’IJ2 |n;J2' (52)

with «! given in Eq.(39). These forms generate the correc-
tions discussed in the Introduction.

When we apply the cutoff formalism we first note that all
of the nonanalytic behavior of the forrm? In m? comes
uniguely from the integral that we labelgdm) in Sec. Ill.
This means that all that we need to do in order to convert the
analysis above to our formalism is to replawd In m3 by
J(mp) everywhere throughout these formulas. We may again
check the chiral consistency of the renormalization program
by verifying that the contribution quadratic i,

2 — A? 1
S9a ()= Tg—2rz 2 | B~ 3@\ HA))|, (53
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can be absorbed into renormalizations of the lowest order TABLE Il. Nonanalytic contributions ta, for various transi-
axial vector couplingsl, ,f via tions in dimensional regularization and for various values of the
cutoff parameter\ in MeV.

3 2
_ 2 2
d,rA_dA_EdA(3dA+5fA+1)W Dim. A=300 A=400 A=500 A=600
1 A2 ga(pn) 1.72 0.37 0.53 0.69 0.84
A7 Ta7 g A2 63 )16772':37 ga(AZ ") 117 0.23 0.34 0.45 0.56
COREPR O 036 007 0.10 0.14 017

Since such coefficients are determined empirically, theda(AZ") 083 015 0.23 0.31 0.39
analysis with small meson masses becomes identical to thgk(3°Z ) 2.46 0.45 0.68 0.91 115
of the dimensionally regularized case.

~3|80 tg?)o :\:/Ias\? Ofd 3\ prrl]ys[callly realistic  cutoffA h weak Hamiltonian. For the dominant octet Hamiltonian this
- eV, and the physical meson masses, we havgy, pe parametrized in terms of two &Y coefficients

fu,dy:

Sga(ij)= ! > o1 GO [T (m2) - i
)= 167277 4 | P ™ 2 ) Pk ACYD=L(Y)) (57)
(55 where
where we have again removed the asymptotic mass-
independent component of the functidtM?) via éV(Ao):_ig(Ao):_i(d +3f,)
- Y A i
J(m?)=J(m?)— A2 (56)
The numerical results using typical values of the cutoff are (25 =- ié’(}‘,:): i(dw—fw)
compared with those from dimensional regularization in V2 V2
Table Il and again reflect the feature that the($chiral N
expansion is now under control at least as far as long dis- {(21)=0
tance effects are concerned—the “mystery” of the correct-
ness of the simple SQ) fit without chiral corrections is g(:°)=—i§(:_)=—i(d —3f,)
resolved. A complete discussion of axial-vector current ma- —0 Voo 23 v T
trix elements can be found ii4]. (58

This yields a good fit to the data, including the chiral (SU
results given in Eq(5).

Chiral invariance relates th8-wave nonleptonic decay Proceeding to one-loop order, the leading nonanalytic cor-
amplitudes to the baryon-to-baryon matrix elements of theaections are dependent upmf, In m,% and have the form

VII. S-WAVE HYPERON DECAY

2

. ‘ 1 A m?
A(Y}>=Jzizj[z<Y;)+mw—2Fz§ p(Y))mi In 5 (59)
with
A= ! ! 9d2 gd f f +9d2+9d f
/D(o)—%wz—4 20a7 20afa] = 22 Tul g+ 50t 5 daTa
- 1 5 ) 9, 1 5 3, 27,
p(AO) Z—;dw —1—2+2dA 9fAdA+§fA _%fw _Z+§dA_9fAdA+?fA
IR (. 7 SN I gfd)
P(o)—zw §§A2AA EW §2A2AA
297= ! 9ol + —dpfa|+—f ! d daf
p('—'O) - 2‘/3 w 24 2 A 2 A'A ‘/— w 8 2 A 2 AlA
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=°)K——id —i+§d2+9d fat o2 |+ —§+§d2+9d f +2—7f2)
p('—'O_ 2\/§W 12 2A AlA 2A 2‘/jw 4 2A Al'A 2A
o 1 d 3+1d+ daf +—1 f 9+3d2+9df
p(Eg) “ oM gt ada afa] ¥ 2Tl —g 5 dat 3daTa
e v (7 _, 5 1, 1 (7 _, 9 3,
p(EO) = Edw ﬂ+3fA+ EdAfA—EdA _Efw 2—4+3fA+ EdAfA‘f‘ EdA

1 5 1, 3,0 1. 5 3, 3,
P(EO) :_zdw _1_2__dA+dAfA+§fA _5fw _1_2+§dA+3dAfA+§fA

o) 2

3 1 3

1
p(3g) 7= _dw( “87° 3

V2
p(E1)"=p(21)=p(X])7=0.

The correction to the Lee-Sugawara relation is found:

d%\‘l‘ EdAfA

L[ 38 1,8
"L T2 At 50aTA

(60)

+ _— 0 2 1 2 2 9 2 9 2 3 2 9 2
ﬂA(EO)_ZA(E,)_A(A,)Z— 51—':37 mg In mg|d,, EdA+3dAfA+ EfA +fy sz_gdAfA_zfA
2 2 3 2 3 3 2
+m;, Inm7idy EdA_EdAfA +fy _EdA_ EdAfA
2 2 , 3 9. 27 9. —7
+m: In mZ| d, —6dA—§dAfA—§fA +fy ZdAfA+§fA ~—6.4x10"". (61

When analyzed using the physical values of the masses, w@nce this renormalization is accomplished, we exactly re-
uncover the problems described in the Introduction. cover the usual chiral analysis.

A very similar analysis obtains as was described in the In the case of a physically realistic masses, we again use
situation for the axial vector currents. In the cutoff formalismthe same mass-independent renormalization to define the re-
the nonanalytic pieces proportional e In 3 are simply  sidual integrali(m). The shift ins-wave amplitudes is then
replaced by the functior:i(m,%). Again, the chiral consis- given by
tency of the renormalization program can be verified by not-
ing that for small meson masses the component quadratic in ~
A, J(mp)
1672F2 "

(64)

) ) 1 )
5A<Y}>=§ (YD = SLOYDNHAD
A2

M) = 15,767

ik L iV Kay K
P(Yj) _Ef(Yj)()\i"‘)\j) , (62
The numerical results are compared with those of dimen-
can be absorbed into renormalized values of the lowest ord&iional regularization in Table Il and it is clear that once
couplingsf,, ,d,, via

TABLE Ill. Nonanalytic contributions tes-wave semileptonic

2 hyperon decay amplitudes in dimensional regularization and for

1
di,=d,— Sldu(1+ 13d3+9f3) + 18f ,daf ]

16772':727 various values of the cutoff paramet&rin MeV.
1 Dim. A=300 A=400 A=500 A=600
2 2
fo=fu— [ fu(1+5d3+9f) +10d,daf A A(A)  -357 -062 —095 —130 —165
A(E] 1.96 0.36 0.54 0.73 0.92
" A? 63 A(Sl) -157 -026 -041 -056 —0.72
16772F27T'
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again the results are dominated by the lowest orde{35U TABLE IV. Nonanalytic contributions to magnetic moments in
forms—there no longer exist large chiral corrections. dimensional regularization and for various values of the cutoff pa-
rameterA in MeV.

VIl MAGNETIC MOMENTS Dim. A=300 A=400 A=500 A=600

The final case considered here is that of magnetic mo-

ments. The lowest order parametrization is given in @y.  *? 0.76 0.22 0.27 0.31 0.34
The leading nonanalytic chiral corrections are lineamip ~ #" —022 -012° ~014  -015 ~ -0.16
and were first calculated by Caldi and Pagels. They have th&A —043  —008 —0.11 ~0.13 —0.15
form M+ 1.05 0.24 0.30 0.36 0.40
M50 0.44 0.08 0.11 0.13 0.15
Mg , - -0.18 -008 —-009 -010 —0.11
Opi=g =7 > olm, (65 s, 0.39 0.12 0.14 0.16 0.18
™ =- -052 -010 -013 —-0.16  —0.18
with M=o -0.90 -017 -022 —-026 —0.30
T 2 K 2 2 2
7=t da)h op =gt STy =t ook, (5d2+3f2 68
wORD 24gFL \3TAT AL (68

m_ 2 K_ _ _ 2
on=(dat TR on=—(da=Ta) Sincef , ,d,, are determined empirically, the analysis is then

identical to that of the dimensionally regularized case.

On the other hand, with the use of a physically realistic
cutoff and meson masses, the magnetic moment shifts can be
obtained by using the mass independent renormalization

O'XZO, UKZZfAdA

.2
ofi==5(d3+3f0), oy =—(datfn)’

given by
T _ K _ ~ 1
05,=0, 0o50=—2dafA R(m)=K(m)+ ZA. (69)
2 i . .
U;: §(di+3f/i)v U§—=(dA—fA)2 The shifts in the magnetic moments are given by
Mg i
= J .
) A ) ) Su; m}j‘, alK(my). (70)
(TAEZ_‘/_gdAfA, O-AE:_‘/_jdAfA
The numerical results for this form for reasonable values of
) the cutoff are compared with those from dimensional regu-
T _ 2 K _ 2 2 larization in Table IV. Again the chiral corrections are no
_=(dy— o= —(ds+
0z-=(a=Ta)%  oz-=3(da+3) longer out of control.
0Zo=—(da—fa)% omo=(da+ )2 (66) IX. SUMMARY

In this analysis, all Feynman integrals are given by the We have seen above that a si_gnificant component of the
linear form calledk (m) in Sec. Ill. The general result ap- POOr convergence found in previous calculations in(3U

propriate for a cutoff regularization is obtained by replacingP@/yon chiral perturbation theory is due to the inclusion of
the nonanalytic dependence, by K(ms). We can then large and spurious short-distance contributions when loop

verify that the leading term im\ can be absorbed into the P'OC€SSES are regularized dimensionally. '_I'he use of a mo-
renormalization of the chiral parameters, leading to an idenM€Ntum space cutoff keeps only the long distance portion of

tical analysis for small values afi;. In this case, examina- tEe Ior?ps :;11nd I(faads To adn |m%r.oved .beh.awor. Indfeed, "’lﬂ'
tion of the term in the magnetic moment shift linearAn though we have formulated our discussion in terms of merely

a different sort of regularization procedure within the general

MoA _ framework of chiral perturbation theory, it is interesting to
Sul=— Y=L, 2 al, (67)  note that our results are quite consistent with the sort of
T SU(3) breaking effects found in chiral confinement models

uch as the cloudy bag, when the effects of kaon and/or eta
oops are isolateflL6]. It should be noted, however, that long
distance regularization isot a model. Indeed, it is the an-
tithesis of a model, since it specifically removes the model-
dependent short distance component of loop diagrams. The
contributions which are retained correspond to the long dis-

shows that it is absorbed into renormalizations of the lowes
order parameterg, ,d,, via

0
d;/«:dl’«+ mdAfA
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tance portions of the loops and are essentially modelthis problem while mesonic chiral theories do not. Most ap-
independent(In chiral perturbative language, they representplications in mesons work perfectly well using dimensional
a partial resummation of the chiral series and include piecegegularization. At first sight one might argue that the separa-
to all orders in the momentum expansion. tion scale in baryons corresponds to lower energies because
It is perhaps surprising that we propose that a change ithe physical size of baryons is larger than mesons. While this
the regulation scheme should improve the calculation. Afteis a true statement, it does not really answer the question,
all, physical quantities are independent of the regularizatiosince the baryon problem surfaces entirely within the point
procedure. However, this is only strictly valid for the full particle theory. For some reason, given the same meson
theory and true independence requires working to almasses, the loop corrections are larger in the baryonic point
orders—when working to any finite order in an effective particle theory compared to a mesonic point particle theory.
theory, some regularization schemes will require large paThis feature can perhaps be blamed on the baryon propagator
rameters in order to approach the right ans¢esrdetailed in  in the loop integral which, being linear in the momentum,
Sec. ), while others can more easily reproduce the correcsuppresses high momentum contributions less than a corre-
physics with small values of the parameters. The cutoff sponding quadratic mesonic propagator. However, the exis-
likewise should not play any role in the final answbif- tence of the problem is beyond doubt, given the troubles
ferent values ofA are equivalent to different regularization discussed in the Introduction. Fortunately, we do not as a
schemes.Nevertheless, at any finite order some dependenceonsequence have to abandon all such chiral calculations—a
on A will remain. Of course, if physical results displayed a revised regularization scheme seems capable of resolving the
strong dependence upon the choiceAobr upon the choice problem.
of cutoff function, then this would signal a problem with the  The simplicity that underlies baryon physics is more evi-
use of such a procedure. However, we have explicitly veri-dent when chiral loops are calculated with a long-distance
fied that this is not the case. In R¢i.2], for example, we regularization. In this context, we hope that baryon chiral
pointed out that the baryon masses can be represented by perturbation theory will become more phenomenologically
essentially identical phenomenology for cutoffs chosen in thaiseful. One can hopefully now use the chiral calculations in
300 MeV<A<600 MeV range or for different choices for order to provide a model independent description of very
the cutoff function, and a similar small residual cutoff depen-long distance physics, and this can be a welcome addition to
dence is found for the remaining quantities discussed aboveur techniques for describing the low energy phenomenology
In fact, in the case of baryon masses, the cutoff dependence# baryons.
is even smaller than anticipated—one might expect a depen-

dence at the level ef the size of neglected next order terms in ACKNOWLEDGMENTS
the energy expansion<{5 MeV), while a cutoff dependence
shows up only at the-1 MeV level. This research was supported in part by the National Sci-

We might ask why baryon chiral perturbation theory hasence Foundation and the Deutsche Forschungsgemeinschaft.
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